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I. MATHEMATICAL APPROACH FOR
COOKING A RICE GRAIN

To model the cooking process of a rice grain five rele-
vant elements need to be taken into account:

· The rice grain is at a constant temperature T.

· Heating is diffusing faster than moisture through the
rice grain9.

· Linear diffusion is a good approximation for heating
but it is not for wetting which is described by non-linear
diffusion4,5,9.

· Rice grains swell significantly during absorption
which implies that diffusion with moving boundaries
needs to be considered4,5.

· If temperature is high enough granules will undergo
gelatinisation and that implies a simultaneous problem
of diffusion and a 1st order irreversible reaction2,4.

· The variation of the diffusivity (D) follows an Ar-
rehnius law with temperature11.

Several models have been proposed taking into ac-
count only one or two of the above elements2,8. However,
swelling and gelatinisation need to be considered in or-
der to properly estimate wetting times. Mathematically,
swelling and gelatinisation processes have been studied
separately because the timescales for heating and wet-
ting are significantly different9.

A. Gelatinisation model

The present gelatinisation model has been built con-
sidering the following assumptions that have been made
according to the literature review performed:

1 The moisture front coincides with the gelatinisation
front. The rice grain will be a sphere of equivalent radius
b. The equivalent radius is the radius of the sphere that
has the same volume as the grain10.

2 The front is sharp and delimits the interface between
virgin starch and gelatinised starch. The front is located
at a(t) and its position varies with time.

3 At the front, the moisture content equals the criti-
cal moisture content needed for irreversible gelatinisation
(MG), which is temperature dependant, see eq. 2

4 The flux of water has to be sufficient to gelatinise
starch at the moisture front, see eq. 3

5 Moisture follows non-linear diffusion1 for r > a, see
eq. 4

6 Initially, the moisture content (M0) is constant.
Outside the rice grain the moisture content is also con-
stant at any time (M1), see eq. 5

The moisture content (M) in this project refers to the
wet ratio (Mw) which is defined as the ratio of the weight
of water to the total weight (dry grain weight plus water
weight). It goes from 0 to 1. Whereas dry ratio (Md)
refers to the ratio of the mass of water to the weight of
the rice grain. Both are related by:

FIG. 1. Schematic representation of a spherical rice grain of radius

b. The moisture front located at a(t) moves towards the center of

the grain.

Md =
Mw

1−Mw
(1)

Following the indications above, the model will consist
of the following equations:

M(a, t) = M(TG) ≡MG (2)

da

dt
=
−D∇M
MG −M0

(3)

∂M

∂t
= ∇ · (D(M)∇M) for r > a (4)

M(r, 0) = M0 M(b, t) = M1 (5)

The expression in eq. 3 can be interpreted in terms
of the mass conservation across the front discontinuity5.
A different interpretation that leads to the same expres-
sion is that the flux of water required to move the front
(left-hand term in eq. 3) equals the velocity of water
arriving to the front9. The right-hand side can be un-
derstood from diffusion theory. It is obtained from the
hypothesis that the rate transfer of matter per unit area
(F) is proportional to the normal component of the con-
centration gradient with respect to the surface. Then for

1D, F = −D∂M
∂x

and since flux is concentration differ-

ence times velocity of the fluid we can conclude that the

velocity of water inside a stationary solid is −D (∇M)
4M .

The non-linearity in eq. 4 is due to the dependence of
the moisture diffusivity (D) on M for starch-water solu-
tions.

D = D0e
δM (6)

, where δ and D0 are both constants determined ex-
perimentally, we will consider D0 = 1.43 ·10−7cm2/s and
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δ = 5.22 provided by Malcolm et al.5 by fitting the ex-
perimental results to a single exponential.

Other expressions for D have been proposed by differ-
ent authors6,7. Although the analytical expression for D
is not clear its dependence with moisture has been exper-
imentally proved3 and most of the authors coincide with
the expression given in eq.6. A similar one was proposed
by Gomi et al.7 after performing measurements of ground
rice starch with water. The diffusivity was fitted to the
expression:

D = −1.9 · 10−5 + 6.58 · 10−6eM + 8.94 · 10−6eM
2

(7)

The condensed expression in eq.6 is similar to the ex-
perimental fit as shown in FIG.2

FIG. 2. The expression obtained by Gomi et al.(blue) is similar

to the one we will use but returns negative diffusivities for M <∼ 0.4

This set of equations has been solved for 1-dimension
in Cartesian coordinates under steady-state conditions9.
We will solve them considering that moisture is in a
steady state and using spherical coordinates.

∂M

∂t
= 0⇒ r2D(M)

∂M

∂r
= A(t) (8)

To linearise the above partial differential equation we
will use a Kirchhoff transformation

Γ =

∫ M

M0

D(ω) dw. (9)

We introduce (9) into the last equality of (8) by means
of the Leibniz’s rule for differentiation under the integral
sign:

∂

∂x

(∫ b(x)

a(x)

f(x, y) dy

)
=

∫ b(x)

a(x)

∂xf(x, y) dy + f
(
b, x
)
b′ − f

(
a, x
)
a′ (10)

where a’ and b’ are the derivatives of a and b with respect
to x. Then,

∂

∂r

(
r2
∂Γ

∂r

)
= 0⇒ r2

∂Γ(r)

∂r
= A(t) (11)

,where A is only a function of time. If we integrate the
expression above between (r, a) and (Γ[M ], Γ(MG)) re-
spectively:

Γ(M)− Γ(MG) =
−A(t)

r
+
A(t)

a(t)
(12)

To find A(t) we will use the boundary conditionM(b, t) =
M1. Thus, we will obtain:

A(t) =
Γ(M1)− Γ(MG)

1
a(t) −

1
b

(13)

Then, we can express the gelatinisation front in terms
of the Kirchhoff transformation of moisture:

Γ(M)− Γ(MG)

Γ(M1)− Γ(MG)
=

−1
r + 1

a(t)

1
a(t) −

1
b

(14)

Using the expression given in eq. 6 for diffusivity:

Γ =
D0

δ
[eδM − 1] (15)

Then, from the equation for the time evolution of the
gelatinisation front (eq. 2) and the expression in eq. 8,
we find that D∇M = A(t) 1

r2 and using the expression
for A(t) we obtain the following equality:

da

dt
=

[
−1

r2
1

MG −M0

Γ(M1)− Γ(MG)
1
a(t) −

1
b

]
r=a(t)

(16)

After rearranging the expression above and defining χ:

χ ≡ (Γ(M1)− Γ(MG))

MG −M0
(17)

we perform an indefinite integral on both sides of expres-
sion 16. Thus,

a2b

2
− a3

3
= −χbt+K1 (18)

,where K1 is the integration constant that we will find
by using that a(0) = b.

The moisture front location with time is a polynomial
of degree three of the form:

−2a3 + 3ba2 − b3 + 6χbt = 0 (19)
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To solve the cubic equation we can use Cardano
formula12 to obtain an analytical expression for a(t):

a =
3

√
b3

8
+

6χbt− b3

4
+

√
18χ2t2b2 − 3χb4t

8
+

3

√
b3

8
+

6χbt− b3

4
−
√

18χ2t2b2 − 3χb4t

8
+ b/2 (20)

The equation has three solutions as seen in FIG 3.
To obtain a more intuitive solution we will evaluate the

above expression using Mathematica. The time needed
for the front to arrive at the centre of the grain can be
regarded as the cooking time. In this model, that time
depends on the radius of the grain, the moisture bound-
ary conditions and the temperature by means of the dif-
fusivity constant, as shown in FIG 3.1 and FIG 4.

(b)Front evolution with time for b=0.176 cm and M0

= 0.13, the cooking time is 13.75 min

FIG. 3. From three solutions of the cubic equation, the green one

moves away from the grain while the red one takes only negative

values.We will study the third solution (blue) that goes from a=b

to a=0 in three different conditions determined by b and M0.

(a)Front evolution with time for b=0.176 cm and
M0 = 0.099, the cooking time is 14.80 min

(b)Front evolution with time for b=0.25 cm and
M0 = 0.13, the cooking time is 28.30 min

FIG. 4. Different results for different values obtained in the liter-

ature for b and M0
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