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S1 Supplemental Lemmas and Proofs for Control Regime A

Under regime A, the lower capacity threshold nA2 of zone (3)—moderate capacity with repositioning—and the
optimal capacity allocation within this zone, do not have explicit expressions (see Proposition 4). Lemmas S-1
and S-2 fill in the remaining details.

Given a level of participating capacity n, Proposition 4 shows that the optimal capacity allocation in
zone (3) has r12 > 0, r21 = 0 and q = (q∗1(s), 0). Therefore, the constraints of Problem A at a given capacity
n, (12a)–(12c) and (22), simplify to

s+
(
t12

t21
s21 − s12

)
+ q∗1(s) = n (S.1)

and 0 ≤ s ≤ S, t12
t21
s21 > s12. Note that s determines r12 by the second term and q by q∗1(s).

Lemma S-1 shows that there are three possible optimal capacity allocation patterns at any level of
participating capacity in zone (3). These patterns differ in terms of whether demand is rejected at the
low-demand location, and if so, for which route(s).

Lemma S-1. Under control regime A, the optimal capacity allocation as a function of the participating
capacity n ∈ (nA2 , nA3 ] (moderate capacity zone with repositioning) follows one of three patterns, denoted
by si(n), i = 1, 2, 3. Let si(n) denote the total service capacity under pattern i, and si

−1(·) denote its
inverse. The optimal pattern i∗(n) is the one that attains the maximum service capacity, i.e., i∗(n) =
argmaxi∈{1,2,3} si(n).

(1) No demand rejection at the low-demand location: only s21 is increasing in this zone.

s1(n) = (S11, S12, s21, S22) subject to (S.1), n ∈ (s1
−1(nA1 ), nA3 ].

(2) Rejecting only cross-traffic demand at the low-demand location: for small n, s21 is increasing while
s12 = 0; for large n, s21 = S21 and s12 is increasing.

s2(n) = (S11, s12, s21, S22) subject to (S21 − s21)s12 = 0 and (S.1), n ∈ (s2
−1(nA1 ), nA3 ].

(3) Rejecting local and cross-traffic demand at the low-demand location: for small n, s21 is increasing while
s11 = s12 = 0; for medium n, s21 = S21, s11 is increasing and s12 = 0; for large n, s21 = S21, s11 = S11

and s12 is increasing.

s3(n) = (s11, s12, s21, S22) subject to (S21−s21)s11 = (S11−s11)s12 = 0 and (S.1), n ∈ (s3
−1(nA1 ), nA3 ].

Proof. By Proposition 4, the optimal capacity allocation of given participating capacity n ∈ (nA2 , nA3 ] has
r12 > 0, r21 = 0 and q = (q∗1(s), 0). Therefore, for fixed n, Problem A reduces to maxs,r,q{Π(s) : (12a) −
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(12c), (22)}, and it can be reformulated as maximizing the total service capacity over feasible service capacity
vector s:

max
s

s (S.2a)

s.t. g(s) := s+
(
t12

t21
s21 − s12

)
+ q∗1(s) ≤ n (S.2b)

0 ≤ sij ≤ Sij , ∀i, j. (S.2c)

Note that g(s) is the total capacity expressed as a function of s. Relaxing the equality constraint (12b) to
the inequality constraint (S.2b) does not matter since positive q2 and q1 = q∗1(s) +k(s)q2 are feasible by (22)
(but not optimal by Proposition 4). Constraint r12 = t12

t21
s21 − s12 > 0 is omitted since a violation results in

s21 ≤ t21
t12
S12 ⇒ s ≤ nA1 , clearly suboptimal in zone (3).

Let α, βij , βij be the dual variables associated with the capacity constraint (S.2b), the upper and lower
bound constraints (S.2c), respectively. The KKT conditions are

(stationarity) α
∂g(s)
∂sij

+ βij − βij = 1, ∀i, j, (S.3a)

(complementary slackness) α(n− g(s)) = βij(Sij − sij) = β
ij
sij = 0, ∀i, j, (S.3b)

(dual feasibility) α, βij , βij ≥ 0, ∀i, j, (S.3c)

(primal feasibility) g(s) ≤ n, (S.3d)

(primal feasibility) 0 ≤ sij ≤ Sij ,∀i, j. (S.3e)

The complementary slackness constraints (S.3b) and dual feasibility constraints (S.3c) establish the rela-
tionship between primal and dual variables: βij = 0 (β

ij
= 0) when sij is not at its upper (lower) bound;

sij must be at its upper (lower) bound when βij > 0 (β
ij
> 0); α = 0 when g(s) < n and g(s) = n when

α > 0. Moreover, βij · βij = 0. We omit explicit references to the primal and dual feasibility constraints
(S.3c)–(S.3e) in the following proof.

To prove the lemma, we will use the above KKT conditions to establish that any optimal solution to
problem (S.2a)–(S.2c) for n ∈ (nA2 , nA3 ] must satisfy four necessary conditions (a)–(d) stated below. Before
that, we calculate some first and second partial derivatives of g(s) that will also be used to prove the four
conditions:

∂g(s)
∂s11

=
s21(1 + t12

t21
) + s22

(s21 + s22)γ̄p−
(
s21 + s22 + s21

t12
t21

)
c
(γ̄p− c) > 1, (S.4)

∂g(s)
∂s12

=
s21(1 + t12

t21
) + s22

(s21 + s22)γ̄p−
(
s21 + s22 + s21

t12
t21

)
c
γ̄p >

∂g(s)
∂s11

> 1, (S.5)

∂g(s)
∂s21

= 1 + t12

t21
+

(s11(γ̄p− c) + s12γ̄p)s22
t12
t21[

(s21 + s22)γ̄p−
(
s21 + s22 + s21

t12
t21

)
c
]2 γ̄p > 1, (S.6)

∂g(s)
∂s22

= 1−
(s11(γ̄p− c) + s12γ̄p)s21

t12
t21[

(s21 + s22)γ̄p−
(
s21 + s22 + s21

t12
t21

)
c
]2 γ̄p < 1. (S.7)

It follows that
∂2g(s)
∂s2

11
= ∂2g(s)

∂s2
12

= ∂2g(s)
∂s11∂s12

= 0, ∂2g(s)
∂s11∂s21

,
∂2g(s)
∂s12∂s21

> 0, ∂2g(s)
∂s2

21
≤ 0, (S.8)
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where the last inequality is strict when s11 + s12 > 0.
Now we are ready to state and prove the four necessary conditions.

(a) All capacity is used within this zone and s21 has a lower bound:

g(s) = n, (S.9)

S12
t21

t12
≤ s21. (S.10)

To prove (S.9), note that when s 6= S, pick any sij < Sij , then βij = 0 by (S.3b). By (S.3a) this implies
that α 6= 0 and hence g(s) = n by (S.3b). When s = S, g(s) = n = nA3 . For (S.10), s21 ≥ S12

t21
t12

follows
directly from s > nA1 in zone (3). By (S.3b), s21 > 0 also implies β21 = 0.

(b) Rejecting local demand at the high-demand location (s22) is suboptimal:

s22 = S22. (S.11)

Using β21 = 0 from part (a) and ∂g(s)
∂s21

> 1, stationarity constraints (S.3a) imply that α < 1. Putting
this and ∂g(s)

∂s22
< 1 back to (S.3a), we obtain β22 > 0. Therefore it follows from (S.3b) that s22 = S22

and β22 = 0.

(c) Rejecting cross-traffic demand (s12) is more profitable than rejecting local demand (s11) at the low-
demand location:

(S11 − s11)s12 = 0. (S.12)

We prove this by contradiction using (S.3a) and (S.3b). Suppose on the contrary (S11 − s11)s12 > 0 for
some s11 < S11 and s12 > 0, then (S.3b) require β11 = β12 = 0 and hence (S.3a) yield

α
∂g(s)
∂s11

− β11 = α
∂g(s)
∂s12

+ β12 = 1.

This cannot happen due to ∂g(s)
∂s11

< ∂g(s)
∂s12

and (S.3c). Therefore we must have (S11 − s11)s12 = 0.

(d) Neither demand stream at the low-demand location is partially served unless s21 is fully served:

s12(S12 − s12)(S21 − s21) = 0, (S.13)

s11(S11 − s11)(S21 − s21) = 0. (S.14)

We prove the two equations in similar ways by showing that any violation will lead to suboptimality.
For (S.13), suppose on the contrary s12(S12− s12)(S21− s21) > 0 for some 0 < s12 < S12 and s21 < S21,
then (S.3b) and β21 = 0 from part (a) require β12 = β12 = β21 = β21 = 0. It hence follows from (S.3a)
that

α
∂g(s)
∂s12

= α
∂g(s)
∂s21

= 1,

thus α > 0 and 1 < ∂g(s)
∂s11

< ∂g(s)
∂s12

= ∂g(s)
∂s21

. By the second derivatives in (S.8), increasing s12 and
decreasing s21 will always maintain the inequality

1 < ∂g(s)
∂s11

<
∂g(s)
∂s12

<
∂g(s)
∂s21

. (S.15)

Therefore we can keep increasing s12 (∆s12 > 0) and decreasing s21 (∆s21 < 0) simultaneously such
that the following equality holds at any subsequent s12 and s21:

∆s12
∂g(s)
∂s12

+∆s21
∂g(s)
∂s21

= 0. (S.16)
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In this way we can maintain

∆g(s) =
∑
i,j

∂g(s)
∂sij

∆sij = ∆s12
∂g(s)
∂s12

+∆s21
∂g(s)
∂s21

= 0,

i.e., keep g(s) constant, while improving the objective function (service capacity) by

∆s = ∆s12 +∆s21 = ∆s12

(
1− ∂g(s)/∂s12

∂g(s)/∂s21

)
> 0,

which follows from (S.15) and (S.16), until s12(S12 − s12)(S21 − s21) = 0 is satisfied.

Similarly, for (S.14), suppose on the contrary s11(S11 − s11)(S21 − s21) > 0 for some 0 < s11 < S11 and
s21 < S21, then (S.3b) and β21 = 0 from part (a) require β11 = β11 = β21 = β21 = 0. It hence follows
from (S.3a) that

α
∂g(s)
∂s11

= α
∂g(s)
∂s21

= 1,

thus α > 0 and 1 < ∂g(s)
∂s21

= ∂g(s)
∂s11

< ∂g(s)
∂s12

. By the second derivatives in (S.8), increasing s21 and
decreasing s11 will always maintain the inequality

1 < ∂g(s)
∂s21

<
∂g(s)
∂s11

<
∂g(s)
∂s12

. (S.17)

Therefore we can keep increasing s21 (∆s21 > 0) and decreasing s11 (∆s11 < 0) simultaneously such
that the following equality holds at any subsequent s11 and s21:

∆s11
∂g(s)
∂s11

+∆s21
∂g(s)
∂s21

= 0. (S.18)

In this way we can maintain

∆g(s) =
∑
i,j

∂g(s)
∂sij

∆sij = ∆s11
∂g(s)
∂s11

+∆s21
∂g(s)
∂s21

= 0,

i.e., keep g(s) constant, while improving the objective function (service capacity) by

∆s = ∆s11 +∆s21 = ∆s21

(
1− ∂g(s)/∂s21

∂g(s)/∂s11

)
> 0,

which follows from (S.17) and (S.18), until s11(S11 − s11)(S21 − s21) = 0 is satisfied.

It is then easy to verify that the above necessary conditions (a)–(d) directly imply the three patterns in
Lemma S-1 as how service capacity varies with an increasing n in the moderate capacity zone. By condition
(b), s22 stays constant at S22. By condition (a), s21 > 0 and there are two cases:

(1) 0 < s21 < S21: it follows from condition (d) that there are four possible values of s11 and s12: (i)
s12 = S12, s11 = S11, leading to pattern (1); (ii) s12 = S12, s11 = 0, contradicting condition (c); (iii)
s12 = 0, s11 = S11, leading to pattern (2) with small n; (iv) s12 = 0, s11 = 0, leading to pattern (3) with
small n.

(2) s21 = S21: condition (d) is satisfied for any values of feasible s11 and s12. It follows from condition (c)
that (i) s12 > 0 ⇒ s11 = S11, leading to pattern (2) with large n; (ii) s11 < S11 ⇒ s12 = 0, leading to
pattern (3) with medium n; or (iii) s11 = S11 and s12 > 0, leading to pattern (3) with large n.

We have thus shown all the three possible patterns.
Note that for each pattern i, the service capacity si(n) increases with n from n = si

−1(nA1 ), where s = nA1
is equal to the constant service capacity in zone (2), and up to n = nA3 , the right end of zone (3). This also
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implies that nA2 = mini{si−1(nA1 )}.

Next we prove the monotonicity of the per-driver profit rate with respect to n in zone (3).

Lemma S-2. Per-driver profit rate under control regime A, πA(n), is decreasing in n for n ∈ (nA2 , nA3 ].

Proof. Substituting s and r from Proposition 4 into (12d) yields

πA(n) = (γ̄p− c)s− cr
n

=


γ̄p− c zone (1) (n ≤ nA1 ),
nA

1
n (γ̄p− c) zone (2) (nA1 < n ≤ nA2 ),

1
n [(γ̄p− c)s∗ − cr∗] zone (3) (nA2 < n ≤ nA3 ),
1
n (γ̄pS − cnC2 ) zone (4) (n > nA3 ).

(S.19)

Lemma S-1 shows that for participating capacity n ∈ (nA2 , nA3 ], the optimal capacity allocation may alternate
among three patterns characterized by si(n), with service capacity si(n) for i = 1, 2, 3. To prove this lemma,
we show that the per-driver profit rate is decreasing for n varying within each of the 3 patterns or at feasible
transitions between patterns. First, note that n = g(s) in zone (3) (see (S.9)) from the proof of Lemma S-1.
Hence ∂n/∂sij = ∂g(s)/∂sij . Then:

(i) Within pattern (1): only s21 is increasing,

π′(n) =

[
(γ̄p− c)− c t12

t21

] (
∂g(s)
∂s21

)−1
n− [(γ̄p− c)s− cr12]

n2

= −S22γ̄p

n2
t12

t21

(
∂g(s)
∂s21

)−1
1 + S11(γ̄p− c) + S12γ̄p

(s21 + S22)γ̄p−
(
s21 + S22 + s21

t12
t21

)
c

2

< 0. (S.20)

(ii) Within pattern (2): for small n, s21 is increasing while s12 = 0,

π′(n) =

[
(γ̄p− c)− c t12

t21

] (
∂g(s)
∂s21

)−1
n− [(γ̄p− c)s− cr12]

n2

= −S22γ̄p

n2
t12

t21

(
∂g(s)
∂s21

)−1
1 + S11(γ̄p− c)

(s21 + S22)γ̄p−
(
s21 + S22 + s21

t12
t21

)
c

2

< 0. (S.21)

For large n, s21 = S21 and s12 is increasing,

π′(n) =
γ̄p
(
∂g(s)
∂s12

)−1
n− [(γ̄p− c)s− cr12]

n2 = 0. (S.22)

Note that π(n) is continuous at the turning (non-differentiable) point where s = (S11, 0, S21, S22).

(iii) Within pattern (3): for small n, s21 is increasing while s11 = s12 = 0,

π′(n) =

[
(γ̄p− c)− c t12

t21

] (
∂g(s)
∂s21

)−1
n− [(γ̄p− c)s− cr12]

n2 = −S22γ̄p

n2
t12

t21

(
∂g(s)
∂s21

)−1
< 0. (S.23)

For medium n, s21 = S21, s11 is increasing and s12 = 0,

π′(n) =
(γ̄p− c)

(
∂g(s)
∂s11

)−1
n− [(γ̄p− c)s− cr12]

n2 = 0. (S.24)
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For large n, s21 = S21, s11 = S11 and s12 is increasing, we have the same (S.22). Note that π(n) is contin-
uous at the two turning (non-differentiable) points where s = (0, 0, S21, S22) and s = (S11, 0, S21, S22).

As n increases, an optimal transition from pattern i to j at n must satisfy

si(n) = sj(n) and si
′(n−) < sj

′(n+). (S.25)

Namely, patterns i and j have the same service capacity at transition n, and the service capacity increases
faster after the transition. We then discuss all three possible transitions.

(i) Between patterns (1) and (2), it is only optimal to transit from (1) to (2). Recall pattern (2) given in
Lemma S-1, n can be small or large at the transition. If n is small such that s21 is increasing while
s12 = 0 at the transition, we have s1 = (S11, S12, s

(1)
21 , S22), s2 = (S11, 0, s(2)

21 , S22).1 By s1 = s2 in
(S.25), there must be s(1)

21 < s
(2)
21 and hence

s1
′(n) =

(
∂g(s)
∂s

(1)
21

)−1

<

(
∂g(s)
∂s

(2)
21

)−1

= s2
′(n),

where the inequality follows from ∂2g(s)/∂s2
21 < 0 given in (S.8). Therefore, (S.25) implies that the

transition must be from pattern (1) to (2): (S11, S12, s
(1)
21 , S22) → (S11, 0, s(2)

21 , S22). Obviously r12

jumps up and π(n) jumps down at the transition.
If n is large such that s21 = S21 and s12 is increasing (or just starts increasing from 0) at the transition,
we have s1 = (S11, S12, s21, S22), s2 = (S11, s12, S21, S22). There must be s1

′(n−) < s2
′(n+) since

otherwise

s1(nA3 ) = s1(n) +
∫ nA

3

n

s1
′(x)dx > s1(n) +

∫ nA
3

n

s1
′(n)dx

≥ s1(n) +
∫ nA

3

n

s2
′(n+)dx = s2(n) +

∫ nA
3

n

s2
′(x)dx = s2(nA3 ),

where the first inequality follows from s1
′(x) = (∂g(s)/∂s21)−1 with g(s) = x and ∂2g(s)/∂s2

21 < 0
given in (S.8), the second inequality is by the opposite assumption that s1

′(n) = s1
′(n−) ≥ s2

′(n+), and
the next equality follows from s1(n) = s2(n) (at transition), s2

′(x) = (∂g(s)/∂s12)−1 with g(s) = x,
and ∂2g(s)/∂s2

12 = 0 given in (S.8). Therefore, (S.25) implies that the transition must be from pattern
(1) to (2): (S11, S12, s21, S22) → (S11, s12, S21, S22). Similarly, r12 jumps up and π(n) jumps down at
the transition.

(ii) Between patterns (1) and (3), it is only optimal to transit from (1) to (3). Recall pattern (3) given in
Lemma S-1, n can be small, medium or large at the transition. The case where n is small (such that s21

is increasing) or large (such that s12 is increasing) can be shown identically as above. For the case where
n is medium, such that s11 is increasing (or just starts increasing from 0) while s12 = 0, s21 = S21 at the
transition, we have s1 = (S11, S12, s21, S22), s3 = (s11, 0, S21, S22). There must be s1

′(n−) < s3
′(n+)

since otherwise

s1(nA3 ) = s1(n) +
∫ nA

3

n

s1
′(x)dx > s1(n) +

∫ nA
3

n

s1
′(n)dx

≥ s1(n) +
∫ nA

3

n

s3
′(n+)dx = s3(n) +

∫ nA
3

n

s3
′(x)dx = s3(nA3 ),

1We use superscript numbers to distinguish patterns under consideration.
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where
∫ nA

3
n

s3
′(x)dx is an integration from n to s3

−1((S11, 0, S21, S22)) and then to nA3 . The reasoning
for the (in)equalities is analogous to that in above part (i). Therefore, (S.25) implies that the transition
must be from pattern (1) to (3): (S11, S12, s21, S22)→ (s11, 0, S21, S22). Apparently r12 jumps up and
π(n) jumps down at the transition.

(iii) Between patterns (2) and (3), it is only optimal to transit from (2) to (3). Recall patterns (2) and
(3) given in Lemma S-1, the capacity allocations are the same in the case where n is large (such that
s11 = S11, s21 = S21 while s12 is increasing), thus transitions must happen when n is not large, where
s12 ≡ 0 is in common. Furthermore, when n is not large, there is only one case under pattern (2)
where s21 is increasing, and there are two cases under pattern (3): small n where s11 = 0 and s21 is
increasing, and medium n where s21 = S21 and s11 is increasing. This shares a similar structure as the
discussion between patterns (1) and (2) in part (i) above, so we omit the details here. Similarly, note
that the transitions, if any, are always from pattern (2) to (3).

Proof of Proposition 5. From Lemma S-1, it is optimal to reject rider requests at the low-demand location
for some n in zone (3) if and only if pattern (2) or (3) provides the largest service capacity at some n ∈
(nA2 , nA3 ), i.e., ∃n ∈ (nA2 , nA3 ) such that s1(n) < maxi∈{2,3} si(n). We need to compare the three patterns in
terms of their service capacity si(n), i = 1, 2, 3. We have the following three observations.

(i) At the right end of zone (3), s1(nA3 ) = s2(nA3 ) = s3(nA3 ) = S.

(ii) For n close to nA3 (n→ nA−3 ), it follows from Lemma S-1 that pattern (1) has s1(n) = (S11, S12, s21, S22)
with s21 varying, while pattern (2) and (3) both have s2(n) = s3(n) = (S11, s12, S21, S22) with s12

varying. Therefore we have

s1
′
−(nA3 ) = ∂s/∂s21

∂g(s)/∂s21

∣∣∣∣
s=S

=
(
∂g(s)
∂s21

∣∣∣∣
s=S

)−1
> 0,

s1
′′
−(nA3 ) =

∂s1
′
−(nA3 )/∂s21

∂g(s)/∂s21

∣∣∣∣
s=S

= − ∂2g(s)/∂s2
21

(∂g(s)/∂s21)3

∣∣∣∣
s=S

> 0,

i.e., s1(n) is strictly convex and increasing in n near nA3 . And

s2
′
−(nA3 ) = s3

′
−(nA3 ) = ∂s/∂s12

∂g(s)/∂s12

∣∣∣∣
s=S

=
(
∂g(s)
∂s12

∣∣∣∣
s=S

)−1
,

s2
′′
−(nA3 ) = s3

′′
−(nA3 ) =

∂s2
′
−(nA3 )/∂s12

∂g(s)/∂s12

∣∣∣∣
s=S

= − ∂2g(s)/∂s2
12

(∂g(s)/∂s12)3

∣∣∣∣
s=S

= 0,

i.e., s2(n) and s3(n) both increase linearly in n near nA3 .

(iii) The proof of Lemma S-2 establishes that any optimal pattern transitions as n increases in zone (3)
must be from pattern (1) to (2), from pattern (1) to (3), or from pattern (2) to (3)—not vice versa.

Using the above observations, the sufficient and necessary condition that pattern (2) or (3) provides the
largest service capacity at some n ∈ (nA2 , nA3 ) is

s2
′
−(nA3 ) = s3

′
−(nA3 ) < s1

′
−(nA3 ). (S.26)

To see this, if (S.26) holds, observation (i) and (ii) immediately imply that s2(nA−3 ) = s3(nA−3 ) > s1(nA−3 ),
hence patterns (2) and (3) provide the (same) largest service capacity close to nA3 . On the other hand, if
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(S.26) does not hold, observation (i) and (ii) imply that s2(nA−3 ) = s3(nA−3 ) < s1(nA−3 ), i.e., pattern (1) is
optimal near nA3 . It then follows from observation (iii) that there is no transition from pattern (2) or (3) to
pattern (1) as n increases in zone (3), hence pattern (1) is optimal throughout zone (3). Therefore (S.26) is
sufficient and necessary for pattern (2) or (3) to be optimal somewhere in zone (3).
We now translate (S.26) to condition (36) in the proposition. Putting the first derivatives in observation (ii)
into (S.26), we get

(
∂g(s)
∂s12

∣∣∣
s=S

)−1
<
(
∂g(s)
∂s21

∣∣∣
s=S

)−1
. Using (S.5) and (S.6) in the proof of Lemma S-1, this

becomes
S21(1 + t12

t21
) + S22

(S21 + S22)γ̄p−
(
S21 + S22 + S21

t12
t21

)
c
γ̄p > 1 + t12

t21
+

(S11(γ̄p− c) + S12γ̄p)S22
t12
t21[

(S21 + S22)γ̄p−
(
S21 + S22 + S21

t12
t21

)
c
]2 γ̄p.

Applying the ratios defined in (35) and with algebraic rearrangement, we get inequality (36).

S2 Extension to General Networks

In this section we extend the model to general networks and provide additional numerical results for the
three-location networks in Figure 5.

S2.1 Model Primitives

Consider a general L-location network with location (node) set V = {1, . . . , L} and route (arc) set V × V .
Denote by t ∈ RL×L+ the (constant) travel time matrix and by Λ ∈ RL×L+ the potential demand rate matrix
(given rider price p per unit of travel time). Drivers’ profit and participation have the same structure as
described in §2.1. As direct extensions from the two-location network, denote by λ ∈ RL×L+ (λ ≤ Λ) the
effective demand rate matrix, ν ∈ RL×L+ (with zero diagonal elements) the repositioning rate matrix, and
w, q ∈ RL+ the steady-state waiting time and queue length vectors, respectively. Denoting η(λ, ν) ∈ H :=
{η ∈ RL×L+ : η1 = 1} as the matrix of steady-state repositioning fractions resulting from λ and ν, we have

ηij(λ, ν) =


∑

k∈V
λik∑

k∈V
(λik+νik)

j = i

νij∑
k∈V

(λik+νik)
j 6= i,

i, j ∈ V. (S.27)

The steady-state system constraints include: (i) flow balance at each location (outflows equal inflows),∑
i∈V (λij+νij) =

∑
k∈V (λjk+νjk), ∀j ∈ V , and (ii) total capacity

∑
i,j∈V (λij+νij)tij+

∑
i∈V [wi

∑
j∈V λij ] =

n.
Similar to the two-location network model, per-driver profit rate can be computed in two ways: (i) as

the per-driver proportion of the cumulative driver profits:

π(λ, ν, n) =
(γ̄p− c)

∑
i,j∈V λijtij − c

∑
i,j∈V νijtij

n
,

where the number of participating drivers n satisfies the participation equilibrium n = NF (π(λ, ν, n)), and
(ii) from the perspective of an individual driver circulating through the network, π̃(η̃;λ,w), as a function of
her own repositioning strategy (fractions) η̃ given the routing probabilities implied by λ and the queueing
delays w. In equilibrium, the repositioning fractions η(λ, ν) induced by the aggregate flow rates (λ, ν) through
(S.27) maximizes the individual drivers’ profit rate, i.e.,

η(λ, ν) ∈ argmax
η̃∈H

π̃(η̃;λ,w). (S.28)
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Since every driver chooses η(λ, ν), each earns the same profit rate, so that π̃(η(λ, ν);λ,w) = π(λ, ν, n) for all
(λ, ν, w, n) tuples that satisfy the system flow constraints described above.

Reformulating the Repositioning Equilibrium Constraint (S.28). Let E ij be the matrix operator
that replaces a matrix’s ith row by the basis vector ej , e.g., E ij η̃ denotes the altered repositioning strategy
η̃ where the driver chooses a pure strategy at location i that repositions only to j. At any location i, let
Ri(η̃) := {j ∈ V : η̃ij > 0} ⊆ V denote the subset of locations that are assigned positive probabilities by
repositioning strategy η̃, so |Ri(η̃)| = 1 is a pure strategy and |Ri(η̃)| > 1 is a mixed strategy. Since all
locations in Ri(η̃), if adopted as the only repositioning destination under pure strategies, must yield equal
profit rate that is higher than locations outside Ri(η̃), we have

π̃(E ij η̃;λ,w) = π̃(E ikη̃;λ,w) ≥ π̃(E ilη̃;λ,w), ∀j, k ∈ Ri(η̃), l /∈ Ri(η̃).

Therefore, the repositioning equilibrium constraint (S.28) is equivalent to the following constraints (S.29)–
(S.31), where η represents the repositioning fractions η(λ, ν) determined in (S.27).

π̃(E ijη;λ,w) = ξi − ζij , ∀i, j ∈ V, (S.29)

ζijηij = 0, ∀i, j ∈ V, (S.30)

ξ ∈ RL, ζ ∈ RL×L+ , η ∈ RL×L+ . (S.31)

S2.2 Steady-State Per-Driver Profit Rate

Given the steady-state system characterized by (λ,w), we can formulate an individual driver’s location
visiting process as a Semi-Markov Process (SMP), where the state is the latest location (node) the driver has
visited and a transition occurs when the driver arrives at a location, before making a repositioning decision
on whether to join the (potential) queue or reposition to another location. Then the driver’s cumulative
profit process is a Markov Renewal-Reward Process {π̃(t)} described by a sequence {(Yk, Xk,Wk)}k∈N as
π̃(
∑k
i=1 Xi) =

∑k
i=1 Wi, where state Yk is the location after the kth transition, Xk is the sojourn time

between the (k− 1)th and kth transition (which includes potential queueing delay and travel time in service
or in repositioning), and reward Wk is the driver profit collected between the (k − 1)th and kth transition
(which includes potential service revenue and driving cost).

The transition probability matrix of the embedded DTMC {Yk} is a function of the driver’s repositioning
strategy η̃ given the routing probabilities implied by λ, P (η̃;λ), with elements

Pij(η̃;λ) =


η̃ii

λii∑
k∈V

λik
if j = i

η̃ij + η̃ii
λij∑

k∈V
λik

if j 6= i,
i, j ∈ V,

∑
k∈V

λik > 0. (S.32)

If
∑
k∈V λik = 0 for some i, then Pii(η̃;λ) = 1(η̃ii > 0) and Pij(η̃;λ) = η̃ij1(η̃ii = 0) for j 6= i. In the case

where
∑
k∈V λik = 0 and η̃ii > 0, state i is absorbing. We assume

∑
k∈V λik > 0 for i ∈ V so that the

Markov chain is irreducible. Let p(η̃;λ) ∈ ∆L−1 be the associated stationary distribution.
The expected reward (driver profit) after a transition into location i is then given by

Ri(η̃;λ) := E(Wk+1 | Yk = i) = (γ̄p− c)η̃ii
∑
j∈V

λij∑
k∈V λik

tij − c
∑

j∈V \{i}

η̃ijtij , i ∈ V, (S.33)

and the expected sojourn time after a transition into location i is

Ti(η̃;λ,w) := E(Xk+1 | Yk = i) = η̃ii

wi +
∑
j∈V

λij∑
k∈V λik

tij

+
∑

j∈V \{i}

η̃ijtij , i ∈ V. (S.34)
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Let R(η̃;λ) ∈ RL and T (η̃;λ,w) ∈ RL+ be the corresponding vectors, respectively.2 The following proposition
gives the steady-state driver profit rate by the renewal reward theorem.

Proposition 1. An individual driver’s expected steady-state profit rate is a function of her repositioning
strategy η̃ for system state (λ,w), given by

π̃(η̃;λ,w) := lim
t→∞

π̃(t)
t

= Π1

τ1
= eT1 [I − P ◦(η̃;λ)]−1R(η̃;λ)
eT1 [I − P ◦(η̃;λ)]−1T (η̃;λ,w)

, (S.35)

where Π1 and τ1 are the expected cycle profit and cycle length, respectively, with cycles defined as consecutive
arrivals at location 1 (before joining the queue or repositioning), and P ◦ = [0, P∗,2, · · ·P∗,L] is the P (η̃;λ)
matrix with first column replaced by 0.

Proof. Let Πi, i ∈ V be the expected profit collected by a driver starting from location i (before joining the
queue or repositioning) and ending at coming back to location 1, and Π the corresponding vector. We have

Π1 = η̃11
∑
j∈V

λ1j∑
k∈V λ1k

[(γ̄p− c)t1j +Πj1(j 6= 1)] +
∑

j∈V \{1}

η̃1j(−ct1j +Πj),

Πj = η̃jj
∑
l∈V

λjl∑
k∈V λjk

[(γ̄p− c)tjl +Πl1(l 6= 1)] +
∑

l∈V \{j}

η̃jl (−ctjl +Πl1(l 6= 1)) , j ∈ V \{1}.

In vector form and using (S.32) and (S.33), we can derive

Π = P ◦(η̃;λ)Π +R(η̃;λ)⇒ Π = [I − P ◦(η̃;λ)]−1R(η̃;λ).

Let τi, i ∈ V be the expected duration starting from location i (before joining the queue or repositioning)
and ending at coming back to location 1, and τ the corresponding vector. We have

τ1 = η̃11

w1 +
∑
j∈V

λ1j∑
k∈V λ1k

(t1j + τj1(j 6= 1))

+
∑

j∈V \{1}

η̃1j(t1j + τj),

τj = η̃jj

[
wj +

∑
l∈V

λjl∑
k∈V λjk

(tjl + τl1(l 6= 1))
]

+
∑

l∈V \{j}

η̃jl (tjl + τl1(l 6= 1)) , j ∈ V \{1}.

In vector form and using (S.32) and (S.34), we can derive

τ = P ◦(η̃;λ)τ + T (η̃;λ,w)⇒ τ = [I − P ◦(η̃;λ)]−1T (η̃;λ,w).

It follows from renewal reward theory that

π̃(η̃;λ,w) = Π1

τ1
= eT1 [I − P ◦(η̃;λ)]−1R(η̃;λ)
eT1 [I − P ◦(η̃;λ)]−1T (η̃;λ,w)

.

S2.3 Three Control Regimes: Problem Formulations

We now formulate the platform’s revenue maximization problem under the three control regimes.
2The above quantities can be expressed in compact matrix/vector form as

P (η̃;λ) = diag(D(η̃))
[
diag(λ1)−1λ

]
+ η̃ − diag(D(η̃)),

R(η̃;λ) = (γ̄p− c)diag(D(η̃))
[
diag(λ1)−1 ((λ ◦ t)1)

]
− c
[(
η̃ − diag(D(η̃))

)
◦ t
]

1,

T (η̃;λ,w) = diag(D(η̃))
[
w + diag(λ1)−1 ((λ ◦ t)1)

]
+
[(
η̃ − diag(D(η̃))

)
◦ t
]

1,

where diag(a) generates a diagonal matrix from vector a, and D(A) generates a vector from the diagonal elements of matrix
A.
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Centralized Control (C). This benchmark regime can be formulated as the following optimization problem.

(Problem C) max
λ,ν,w,n

Π(λ) := γp
∑
i,j∈V

λijtit (S.36a)

s.t.
∑
i∈V

(λij + νij) =
∑
k∈V

(λjk + νjk), ∀j ∈ V, (S.36b)∑
i,j∈V

(λij + νij)tij +
∑
i∈V

[wi
∑
j∈V

λij ] = n, (S.36c)

0 ≤ λ ≤ Λ, ν ≥ 0, w ≥ 0, (S.36d)

π(λ, ν, n) =
(γ̄p− c)

∑
i,j∈V λijtij − c

∑
i,j∈V νijtij

n
, (S.36e)

n = NF (π(λ, ν, n)). (S.36f)

For fixed capacity n the problem for regime C is a simple LP given by

ΠC(n) = max
λ,ν,w
{Π(λ) : (S.36b)–(S.36d)}. (S.37)

Admission Control (A). Representing the repositioning equilibrium constraint (S.28) using (S.29)–(S.31)
together with (S.27) and (S.35), the platform’s problem can be formulated as an MPEC (Mathematical
Program with Equilibrium Constraints):

(Problem A) max
λ,ν,w,n,ξ,ζ

{Π(λ) : (S.27), (S.29)–(S.31), (S.35), (S.36b)–(S.36f)}. (S.38)

For fixed capacity n the problem for regime A is a nonlinear problem given by

ΠA(n) = max
λ,ν,w,n,ξ,ζ

{Π(λ) : (S.27), (S.29)–(S.31), (S.35), (S.36b)–(S.36d)}. (S.39)

Minimal Control (M). Under pro-rata (FIFO) matching, we need the following additional admission
constraints: The effective demand rates are proportional to the potential demand at each location:

λij = kiΛij , 0 ≤ ki ≤ 1, ∀i, j ∈ V, (S.40)

where ki is the service rate at location i. Drivers cannot be repositioning out of location i if the potential
rider demand at that location has not been fully served, i.e.,

(1− ki)νij = 0, ∀i, j ∈ V, (S.41)

and demand requests originating at location i can only be lost if this location has no supply buffer, so no
drivers are waiting, i.e.,

(1− ki)wi = 0, ∀i ∈ V. (S.42)

Under this regime, the platform’s problem can be formulated as:

(Problem M) max
λ,ν,w,n,ξ,ζ

{Π(λ) : (S.27), (S.29)–(S.31), (S.35), (S.36b)–(S.36f), (S.40)–(S.42)}. (S.43)

For fixed capacity n the problem for regime M is the nonlinear problem

ΠM (n) = max
λ,ν,w,n,ξ,ζ

{Π(λ) : (S.27), (S.29)–(S.31), (S.35), (S.36b)–(S.36d), (S.40)–(S.42)}. (S.44)
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S2.4 Additional Numerical Results for Networks in Figure 5

In §6 we introduced several types of three-location ring network in Figure 5 and discussed main findings
from network I under Admission Control. Here we present detailed capacity allocation for network I under
Minimal Control (Table 1), as well as for networks II and III under Minimal Control and Admission Control
(Tables 2 to 5). Note the common setting of unit travel times, rider price p = 4, commission rate γ = 25%
and driving cost c = 1.

n service k 1 k 2 k 3 r 12 r 13 q 1 q 2 q 3 η 11 η 12 η 13
6 6.00 0.90 0.33 0.41 0.00 0.00 0.00 0.00 0.00 100% 0% 0%
7 6.64 1.00 0.36 0.45 0.00 0.00 0.36 0.00 0.00 100% 0% 0%
8 6.64 1.00 0.36 0.45 0.00 0.00 1.36 0.00 0.00 100% 0% 0%
9 6.64 1.00 0.36 0.45 0.00 0.00 2.36 0.00 0.00 100% 0% 0%
10 6.64 1.00 0.36 0.45 0.00 0.00 3.36 0.00 0.00 100% 0% 0%
11 6.64 1.00 0.36 0.45 0.00 0.00 4.36 0.00 0.00 100% 0% 0%
12 6.64 1.00 0.36 0.45 0.00 0.00 5.36 0.00 0.00 100% 0% 0%
13 6.64 1.00 0.36 0.45 0.00 0.00 6.36 0.00 0.00 100% 0% 0%
14 6.87 1.00 0.37 0.50 0.00 0.12 7.01 0.00 0.00 96% 0% 4%
15 7.49 1.00 0.40 0.62 0.00 0.45 7.06 0.00 0.00 87% 0% 13%
16 8.15 1.00 0.44 0.74 0.00 0.79 7.06 0.00 0.00 79% 0% 21%
17 8.80 1.00 0.47 0.87 0.00 1.13 7.06 0.00 0.00 73% 0% 27%
18 9.45 1.00 0.50 0.99 0.00 1.47 7.07 0.00 0.01 67% 0% 33%
19 9.85 1.00 0.68 0.87 0.83 0.94 7.30 0.00 0.06 63% 17% 20%
20 10.31 1.00 0.70 0.96 0.82 1.19 7.44 0.00 0.23 60% 16% 24%
21 10.66 1.00 0.74 0.99 0.97 1.23 7.68 0.00 0.46 58% 19% 24%
22 11.08 1.00 0.82 0.99 1.29 1.16 7.86 0.00 0.61 55% 24% 21%
23 11.50 1.00 0.90 1.00 1.60 1.09 8.04 0.00 0.76 53% 28% 19%
24 12.00 1.00 1.00 1.00 2.00 1.00 8.14 0.00 0.86 50% 33% 17%
25 12.00 1.00 1.00 1.00 2.00 1.00 8.52 0.33 1.14 50% 33% 17%

Table 1: Optimal capacity allocation for network I under Minimal Control (M)

n service k 1 k 2 k 3 r 21 r 23 q 1 q 2 q 3 η 21 η 22 η 23
7 7.00 0.67 1.00 0.33 0.00 0.00 0.00 0.00 0.00 0% 100% 0%
8 7.00 0.67 1.00 0.33 0.00 0.00 0.00 1.00 0.00 0% 100% 0%
9 7.00 0.67 1.00 0.33 0.00 0.00 0.00 2.00 0.00 0% 100% 0%
10 7.00 0.67 1.00 0.33 0.00 0.00 0.00 3.00 0.00 0% 100% 0%
11 7.00 0.67 1.00 0.33 0.00 0.00 0.00 4.00 0.00 0% 100% 0%
12 7.00 0.67 1.00 0.33 0.00 0.00 0.00 5.00 0.00 0% 100% 0%
13 7.19 0.71 1.00 0.34 0.08 0.00 0.00 5.72 0.00 3% 97% 0%
14 7.89 0.88 1.00 0.38 0.38 0.00 0.00 5.73 0.00 11% 89% 0%
15 8.40 1.00 1.00 0.40 0.60 0.00 0.11 5.89 0.00 17% 83% 0%
16 8.40 1.00 1.00 0.40 0.60 0.00 0.52 6.48 0.00 17% 83% 0%
17 8.40 1.00 1.00 0.40 0.60 0.00 0.93 7.07 0.00 17% 83% 0%
18 8.40 1.00 1.00 0.40 0.60 0.00 1.33 7.67 0.00 17% 83% 0%
19 8.40 1.00 1.00 0.40 0.60 0.00 1.74 8.26 0.00 17% 83% 0%
20 8.47 1.00 1.00 0.41 0.59 0.06 2.10 8.78 0.00 16% 82% 2%
21 8.86 1.00 1.00 0.48 0.52 0.38 2.24 8.99 0.00 13% 77% 10%
22 9.45 1.00 1.00 0.58 0.42 0.88 2.25 9.00 0.00 10% 70% 20%
23 10.05 1.00 1.00 0.67 0.33 1.37 2.25 9.00 0.00 7% 64% 29%
24 10.65 1.00 1.00 0.78 0.22 1.88 2.25 9.00 0.00 4% 59% 37%
25 11.25 1.00 1.00 0.88 0.12 2.38 2.25 9.00 0.00 2% 55% 43%
26 11.85 1.00 1.00 0.97 0.03 2.87 2.25 9.00 0.00 0% 51% 49%
27 12.00 1.00 1.00 1.00 0.00 3.00 2.43 9.29 0.29 0% 50% 50%
28 12.00 1.00 1.00 1.00 3.00 2.96 9.52 0.52 0% 50% 50%

Table 2: Optimal capacity allocation for network II under Minimal Control (M)
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n service s 11 s 22 s 32 r 23 q 1 q 2 q 3 η 22 η 23
10 9.00 1.00 1.00 1.00 0.00 0.00 1.00 0.00 100% 0%
11 9.00 1.00 1.00 1.00 0.00 0.00 2.00 0.00 100% 0%
12 9.00 1.00 1.00 1.00 0.00 0.00 3.00 0.00 100% 0%
13 9.00 1.00 1.00 1.00 0.00 0.00 4.00 0.00 100% 0%
14 9.00 1.00 1.00 1.00 0.00 0.00 5.00 0.00 100% 0%
15 9.12 1.00 1.00 1.12 0.12 0.14 5.62 0.00 96% 4%
16 9.32 1.00 1.00 1.32 0.32 0.37 5.98 0.00 90% 10%
17 9.54 1.00 1.00 1.54 0.54 0.58 6.34 0.00 85% 15%
18 9.77 1.00 1.00 1.77 0.77 0.80 6.67 0.00 80% 20%
19 10.00 1.00 1.00 2.00 1.00 1.00 7.00 0.00 75% 25%
20 10.25 1.00 1.00 2.25 1.25 1.20 7.31 0.00 71% 29%
21 10.50 1.00 1.00 2.50 1.50 1.38 7.62 0.00 67% 33%
22 10.76 1.00 1.00 2.76 1.76 1.57 7.90 0.00 63% 37%
23 11.04 1.00 1.00 3.04 2.04 1.74 8.18 0.00 60% 40%
24 11.32 1.00 1.00 3.32 2.32 1.90 8.45 0.00 56% 44%
25 11.62 1.00 1.00 3.62 2.62 2.06 8.70 0.00 53% 47%
26 11.92 1.00 1.00 3.92 2.92 2.21 8.94 0.00 51% 49%
27 12.00 1.00 1.00 4.00 3.00 2.65 9.17 0.17 50% 50%
28 12.00 1.00 1.00 4.00 3.00 2.96 9.52 0.52 50% 50%

Table 3: Optimal capacity allocation for network II under Admission Control (A)

S3 Driver Supply and Actual Gains in Platform Revenue and Per-Driver Profit

In this section we illustrate the impact of the driver supply characteristics, specifically, the outside opportu-
nity cost distribution F , on the actual platform revenue and per-driver profit gains, compared to the upper
bounds in Propositions 8 and 9, and on the tension between the drivers’ and the platform’s gains. For
simplicity we focus on the gains from admission control, i.e., regime A over M. (Similar effects determine
the actual gains from repositioning.)

Figure 1 illustrates these gains for two opportunity cost distributions. Panel (a) presents a case where
admission control yields large benefits for the platform as a result of a large increase in driver participation,
and consequently only small benefits for individual drivers. Specifically, the top chart in panel (a) shows
for the three control regimes the per-driver profits that are non-increasing functions of the capacity, and the
increasing marginal opportunity cost function F−1 (n/N). Achieving the upper bound on platform revenue
gains from admission control requires two conditions, namely, n∗M = nM2 or equivalently, F−1(nM2 /N) =
πM (nM2 ), and n∗A = nA3 . The first condition holds in the example, the second condition requires infinitely
elastic supply around the profit level πM (nM2 ), i.e., that F grows sufficiently fast around this point such that
nA3 − nM2 additional drivers join if the per-driver profit is slightly larger, so that F−1(nA3 /N) = πM (nA3 ).
The example depicted in Figure 1 (a) shows how the upper bound can be approached if the supply increases
substantially for a moderate change in per-driver profit rate.

Panel (b), in contrast, presents a case where admission control (under regime A or C) yields the maximum
achievable per-driver profit gains as a result of a small increase in driver participation, and consequently
only modest platform revenue gains. As shown in the top chart of panel (b), in this case the marginal
opportunity cost function yields the same equilibrium capacity under minimal control as in panel (a), i.e.,
F−1(nM2 /N) = πM (nM2 ); however, the driver supply is so inelastic that the number of drivers willing to
participate at the maximum profit rate (γp − c) is smaller than the minimum number required to serve all
riders without repositioning, that is, n∗A ≤ nA1 where F−1(n∗A/N) = γp − c. The platform’s commission is
too high to entice more drivers to participate.
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n service k 1 k 2 k 3 r 21 r 23 r 31 q 1 q 2 q 3 η 21 η 22 η 23 η 31 η 33
7 7.00 0.33 0.89 0.78 0.00 0.00 0.00 0.00 0.00 0.00 0% 100% 0% 0% 100%
8 7.87 0.37 1.00 0.87 0.00 0.00 0.00 0.00 0.13 0.00 0% 100% 0% 0% 100%
9 7.88 0.38 1.00 0.88 0.00 0.00 0.00 0.00 1.12 0.00 0% 100% 0% 0% 100%
10 7.88 0.38 1.00 0.88 0.00 0.00 0.00 0.00 2.12 0.00 0% 100% 0% 0% 100%
11 7.88 0.38 1.00 0.88 0.00 0.00 0.00 0.00 3.12 0.00 0% 100% 0% 0% 100%
12 7.88 0.38 1.00 0.88 0.00 0.00 0.00 0.00 4.12 0.00 0% 100% 0% 0% 100%
13 7.88 0.38 1.00 0.88 0.00 0.00 0.00 0.00 5.12 0.00 0% 100% 0% 0% 100%
14 8.31 0.40 1.00 0.98 0.00 0.17 0.00 0.00 5.53 0.00 0% 95% 5% 0% 100%
15 8.43 0.41 1.00 1.00 0.03 0.19 0.00 0.00 6.00 0.36 1% 93% 6% 0% 100%
16 8.50 0.42 1.00 1.00 0.08 0.17 0.00 0.00 6.56 0.69 3% 92% 5% 0% 100%
17 8.87 0.48 1.00 1.00 0.39 0.04 0.00 0.00 6.82 0.88 11% 87% 1% 0% 100%
18 9.00 0.50 1.00 1.00 0.50 0.00 0.00 0.00 7.10 1.40 14% 86% 0% 0% 100%
19 9.00 0.50 1.00 1.00 0.50 0.00 0.00 0.00 7.30 2.20 14% 86% 0% 0% 100%
20 9.00 0.50 1.00 1.00 0.50 0.00 0.00 0.00 7.50 3.00 14% 86% 0% 0% 100%
21 9.01 0.50 1.00 1.00 0.50 0.00 0.00 0.00 7.70 3.78 14% 86% 0% 0% 100%
22 9.00 0.50 1.00 1.00 0.50 0.00 0.00 0.00 7.90 4.60 14% 86% 0% 0% 100%
23 9.02 0.50 1.00 1.00 0.51 0.00 0.00 0.00 8.10 5.37 14% 86% 0% 0% 100%
24 9.20 0.53 1.00 1.00 0.60 0.00 0.06 0.00 8.18 5.96 17% 83% 0% 2% 98%
25 9.38 0.56 1.00 1.00 0.70 0.00 0.12 0.00 8.30 6.50 19% 81% 0% 4% 96%
26 9.53 0.59 1.00 1.00 0.77 0.00 0.17 0.00 8.45 7.07 20% 80% 0% 5% 94%
27 9.75 0.62 1.00 1.00 0.88 0.00 0.25 0.00 8.55 7.58 23% 77% 0% 8% 92%
28 10.06 0.68 1.00 1.00 1.03 0.00 0.35 0.00 8.61 7.95 26% 74% 0% 10% 89%
29 10.46 0.74 1.00 1.00 1.23 0.00 0.48 0.00 8.66 8.17 29% 71% 0% 14% 86%
30 10.90 0.82 1.00 1.00 1.45 0.00 0.63 0.00 8.69 8.34 33% 67% 0% 17% 83%
31 11.18 0.86 1.00 1.00 1.59 0.00 0.73 0.00 8.83 8.66 35% 65% 0% 20% 80%
32 11.66 0.94 1.00 1.00 1.83 0.00 0.89 0.00 8.88 8.74 38% 62% 0% 23% 77%
33 12.00 1.00 1.00 1.00 2.00 0.00 1.00 0.00 9.00 9.00 40% 60% 0% 25% 75%
34 12.00 1.00 1.00 1.00 2.00 0.00 1.00 0.33 9.33 9.33 40% 60% 0% 25% 75%
35 12.00 1.00 1.00 1.00 2.00 0.00 1.00 0.67 9.67 9.67 40% 60% 0% 25% 75%

Table 4: Optimal capacity allocation for network III under Minimal Control (M)

n service s 12 s 13 s 22 s 33 r 21 r 31 q 1 q 2 q 3 η 21 η 22 η 31 η 33
10 9.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 1.00 0.00 0% 100% 0% 100%
11 9.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 2.00 0.00 0% 100% 0% 100%
12 9.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 3.00 0.00 0% 100% 0% 100%
13 9.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 4.00 0.00 0% 100% 0% 100%
14 9.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 5.00 0.00 0% 100% 0% 100%
15 9.12 1.12 1.00 1.00 1.00 0.12 0.00 0.00 5.62 0.14 4% 96% 0% 100%
16 9.32 1.32 1.00 1.00 1.00 0.32 0.00 0.00 5.98 0.37 10% 90% 0% 100%
17 9.54 1.54 1.00 1.00 1.00 0.54 0.00 0.00 6.34 0.58 15% 85% 0% 100%
18 9.76 1.77 1.00 1.00 1.00 0.77 0.00 0.00 6.67 0.80 20% 80% 0% 100%
19 10.00 2.00 1.00 1.00 1.00 1.00 0.00 0.00 7.00 1.00 25% 75% 0% 100%
20 10.24 2.25 1.00 1.00 1.00 1.25 0.00 0.00 7.31 1.20 29% 71% 0% 100%
21 10.50 2.50 1.00 1.00 1.00 1.50 0.00 0.00 7.62 1.38 33% 67% 0% 100%
22 10.76 2.77 1.00 1.00 1.00 1.77 0.00 0.00 7.91 1.56 37% 63% 0% 100%
23 11.00 3.00 1.00 1.00 1.00 2.00 0.00 0.00 8.15 1.85 40% 60% 0% 100%
24 11.00 3.00 1.00 1.00 1.00 2.00 0.00 0.00 8.20 2.80 40% 60% 0% 100%
25 11.00 3.00 1.00 1.00 1.00 2.00 0.00 0.00 8.25 3.75 40% 60% 0% 100%
26 11.00 3.00 1.00 1.00 1.00 2.00 0.00 0.01 8.31 4.68 40% 60% 0% 100%
27 11.00 3.00 1.00 1.00 1.00 2.00 0.00 0.02 8.37 5.60 40% 60% 0% 100%
28 11.00 3.00 1.00 1.00 1.00 2.00 0.00 0.05 8.45 6.51 40% 60% 0% 100%
29 11.00 3.00 1.00 1.00 1.00 2.00 0.00 0.05 8.50 7.44 40% 60% 0% 100%
30 11.04 2.97 1.07 1.00 1.00 1.97 0.07 0.00 8.51 8.41 40% 60% 2% 98%
31 11.33 2.81 1.69 0.89 0.94 1.81 0.69 0.00 8.53 8.64 39% 61% 19% 81%
32 11.66 2.89 1.86 0.95 0.97 1.89 0.86 0.00 8.77 8.82 39% 61% 22% 78%
33 12.00 3.00 2.00 1.00 1.00 2.00 1.00 0.00 9.00 9.00 40% 60% 25% 75%
34 12.00 3.00 2.00 1.00 1.00 2.00 1.00 0.33 9.33 9.33 40% 60% 25% 75%
35 12.00 3.00 2.00 1.00 1.00 2.00 1.00 0.67 9.67 9.67 40% 60% 25% 75%

Table 5: Optimal capacity allocation for network III under Admission Control (A)
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Figure 1: Impact of admission control on the equilibrium capacity, per-driver profit, and platform revenue
(S = (3, 1, 4, 6), S = 14, N = 21, t = 1, γ = 0.25, p = 3, c = 0.45)
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