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Supplemental Materials

S1 Supplemental Lemmas and Proofs for Control Regime A

Under regime A, the lower capacity threshold n4' of zone (3)—moderate capacity with repositioning—and the
optimal capacity allocation within this zone, do not have explicit expressions (see Proposition 4). Lemmas S-1
and S-2 fill in the remaining details.

Given a level of participating capacity n, Proposition 4 shows that the optimal capacity allocation in
zone (3) has r12 > 0,721 = 0 and ¢ = (¢;(s),0). Therefore, the constraints of Problem A at a given capacity
n, (12a)—(12¢) and (22), simplify to

5+ <t12521 - 512> +qt(s)=n (S.1)
to1
and 0 < s < S, %sm > s12. Note that s determines r15 by the second term and ¢ by g7 (s).

Lemma S-1 shows that there are three possible optimal capacity allocation patterns at any level of

participating capacity in zone (3). These patterns differ in terms of whether demand is rejected at the

low-demand location, and if so, for which route(s).

Lemma S-1. Under control regime A, the optimal capacity allocation as a function of the participating
capacity n € (n?,n?] (moderate capacity zone with repositioning) follows one of three patterns, denoted
by si(n), i = 1,2,3. Let 3;(n) denote the total service capacity under pattern i, and 5; *(-) denote its
inverse. The optimal pattern i*(n) is the one that attains the maximum service capacity, i.e., i*(n) =

argmax;ey 233 5i(n)-

(1) No demand rejection at the low-demand location: only sa1 is increasing in this zone.

s1(n) = (S11, S12, 821, S22) subject to (S.1), n € (ﬁ_l(n‘f),nf].

(2) Rejecting only cross-traffic demand at the low-demand location: for small n, s91 is increasing while

s12 = 0; for large n, so1 = S21 and s12 is increasing.

sa(n) = (S11, 812, 821, S22) subject to (Sa1 — s21)s12 =0 and (S.1), n€ (?271(71{1)7”?].

(3) Rejecting local and cross-traffic demand at the low-demand location: for small n, s2; is increasing while

s11 = s12 = 0; for medium n, so1 = So1, S11 s increasing and s12 = 0; for large n, sa1 = Sa1, 511 = S11
and s12 1S increasing.

s3(n) = (s11, 812, 521, S22) subject to (Sa1 —s21)s11 = (S11—511)s12 = 0 and (S.1), n € (5371 (n?),n4].
Proof. By Proposition 4, the optimal capacity allocation of given participating capacity n € (ném?] has
r12 > 0,791 = 0 and ¢ = (¢f(s),0). Therefore, for fixed n, Problem A reduces to max ,,{II(s) : (12a) —



(12¢), (22)}, and it can be reformulated as maximizing the total service capacity over feasible service capacity

vector s:
max § (S.2a)
o t12 "
st. g(s) =35+ 7,521 = S12 +4qi(s) <n (S.2b)
21
0< Sij < Sij7 VZ,] (SQC)

Note that g(s) is the total capacity expressed as a function of s. Relaxing the equality constraint (12b) to
the inequality constraint (S.2b) does not matter since positive ¢z and ¢1 = ¢ (s) + k(s)go are feasible by (22)
(but not optimal by Proposition 4). Constraint 1o = 1%521 — 819 > 0 is omitted since a violation results in

S91 < %512 = 5 < nf, clearly suboptimal in zone (3).

Let a,Bw éij be the dual variables associated with the capacity constraint (S.2b), the upper and lower
bound constraints (S.2c), respectively. The KKT conditions are

(stationarity) a@g(s) + B, — B.. =1, Vi, j, (S.3a)
83“» -

(complementary slackness) a(n — g(s)) = B;(Sij — si;) = ﬁijsij =0, Vi,j, (S.3b)

(dual feasibility) a’Bij’éij >0, Vi, 7, (S.3¢)

(primal feasibility) g¢(s) < n, (S.3d)

(primal feasibility) 0 < s;; < S;;, Vi, j. (S.3e)

The complementary slackness constraints (S.3b) and dual feasibility constraints (S.3¢) establish the rela-
tionship between primal and dual variables: Bij =0 (ﬁw = 0) when s;; is not at its upper (lower) bound;
si; must be at its upper (lower) bound when 3;; > 0 (él] > 0); @ = 0 when g(s) < n and g(s) = n when
a > 0. Moreover, f3,; - ﬁij = 0. We omit explicit references to the primal and dual feasibility constraints
(S.3¢)—(S.3e) in the following proof.

To prove the lemma, we will use the above KKT conditions to establish that any optimal solution to
problem (S.2a)—(S.2¢) for n € (n3', n4'] must satisfy four necessary conditions (a)—(d) stated below. Before

that, we calculate some first and second partial derivatives of g(s) that will also be used to prove the four

conditions:
e = oLy )+ o Gp—c)>1 (.4)
0511 (591 + 522)7p — (.921 1 S99 + 321%?> ‘
dg(s) _ s91(1 + %f) + 822 > dg(s) - .
Oz s91 + 522)7D — (21 + S22 + s21 52 ) ¢ Os11 ’
to1
89(5) tio (511(:)/]? — C) + 512’7)’}7)822% )
0s21 =1 tor + _ : . s7p > 1, (S.6)
{(521 + 822)7p — (321 + S99 + 321ﬁ> C]
dg(s) 1 (s11(3p — ¢) + 812’7]9)821% S 5
0 B > . .
s {(521 +522)7p — (521 + S99 + 821 2%) c}
It follows that
9%g(s) _ 0%g(s) _ 0%g(s) _ 0 2g(s)  9g(s) o 92g(s) 0 )
ds%, sty 05110512 " 08110891 08120891 T 9s3, T .



where the last inequality is strict when s11 + s12 > 0.

(a)

Now we are ready to state and prove the four necessary conditions.

All capacity is used within this zone and ss; has a lower bound:
g(s) = n, (S.9)
t
S122E < so1. (S.10)
12

To prove (S.9), note that when s # S, pick any s;; < S;;, then §,; = 0 by (S.3b). By (S.3a) this implies
that o # 0 and hence g(s) = n by (S.3b). When s = S, g(s) =n = n{'. For (S.10), s9; > 512% follows
directly from 5 > n{" in zone (3). By (S.3b), s21 > 0 also implies 8, = 0.

Rejecting local demand at the high-demand location (s22) is suboptimal:

S22 = Saa. (S.11)

Using §,, = 0 from part (a) and %gs(;) > 1, stationarity constraints (S.3a) imply that o < 1. Putting

this and %97(252) < 1 back to (S.3a), we obtain B4, > 0. Therefore it follows from (S.3b) that sy = Sao
and ,, = 0.

Rejecting cross-traffic demand (s12) is more profitable than rejecting local demand (s11) at the low-
demand location:

(511 — 811)812 =0. (812)
We prove this by contradiction using (S.3a) and (S.3b). Suppose on the contrary (S11 — s11)s12 > 0 for
some s11; < S1; and s12 > 0, then (S.3b) require B;; = gu = 0 and hence (S.3a) yield

dg(s) dg(s)
0s11 0s12

%gs(lsl) < %95(152) and (S.3¢). Therefore we must have (S1; — s11)s12 = 0.

@ -B,=«a + B = 1.

This cannot happen due to

Neither demand stream at the low-demand location is partially served unless so; is fully served:
512(S12 — 812)(S21 — 821) = 0, (S.13)
511(S11 — 811)(S21 — 821) = 0. (S.14)

We prove the two equations in similar ways by showing that any violation will lead to suboptimality.
For (S.13), suppose on the contrary s12(S12 — $12)(S21 — s21) > 0 for some 0 < 12 < S12 and s91 < Sa1,
then (S.3b) and 8, = 0 from part (a) require 51, = §,, = f; = ,, = 0. It hence follows from (S.3a)
that

Og(s) _ dg(s) _
@ 3812 -« 6821 N 1’

thus @ > 0 and 1 < %95(131) < %gs(;) = %’i(;). By the second derivatives in (S.8), increasing s and

decreasing so; will always maintain the inequality

dg(s) - dg(s) - dg(s)

1< .
8811 6312 8521

(S.15)

Therefore we can keep increasing si12 (Asia > 0) and decreasing s9; (As2; < 0) simultaneously such

that the following equality holds at any subsequent s12 and so1:

9g(s) 9g(s)
As1z 0512 0s21

+ Asy = 0. (S.16)



In this way we can maintain

7 dg(s) dg(s) _
Z 8811 sij = Asiz 0s12 + Az Dsa1 0

Z

i.e., keep g(s) constant, while improving the objective function (service capacity) by

— dg(s)/0s12

As=A Asyy = Asip [1— —— ] >0

S S12 + Asay S12 ( D9(s) /0521 >0,
which follows from (S.15) and (S.16), until s15(S12 — s12)(S21 — $21) = 0 is satisfied.
Similarly, for (S.14), suppose on the contrary s11(S11 — $11)(S21 — s21) > 0 for some 0 < s17 < S7; and
21 < So1, then (S.3b) and B, = 0 from part (a) require By =P8, =By = B,, = 0. It hence follows
from (S.3a) that

11

dg(s) dg(s)

= = 1’
0s11 0s21
thus a > 0 and 1 < %ig? = 8898(151) < %i(;). By the second derivatives in (S.8), increasing so; and

decreasing s11 will always maintain the inequality

09(s) _ dg(s) _ Dgls)

1< .
6821 8811 8812

(S.17)

Therefore we can keep increasing so; (Asz; > 0) and decreasing s11 (Asy; < 0) simultaneously such

that the following equality holds at any subsequent s1; and sa1:

dg(s)

A Asg—= = 0. 1
S11 D511 + As9q 9501 0 (S 8)
In this way we can maintain
9g(s ) 9g(s)
= A As =
Z asu si = Asug =+ dsmp =0,

i.e., keep g(s) constant, while improving the objective function (service capacity) by
_ 9g(s)/0s21
As=A Asyp = A 11— == 0
s 511 + Asay 821 < 99(s) /0511 >0,
which follows from (S.17) and (S.18), until s11(S11 — s11)(S21 — $21) = 0 is satisfied.

It is then easy to verify that the above necessary conditions (a)—(d) directly imply the three patterns in
Lemma S-1 as how service capacity varies with an increasing n in the moderate capacity zone. By condition

(b), so2 stays constant at Sa3. By condition (a), s2; > 0 and there are two cases:

(1) 0 < s91 < Syp: it follows from condition (d) that there are four possible values of s11 and s12: (i)
s12 = S12,811 = S11, leading to pattern (1); (ii) s12 = Si2,$11 = 0, contradicting condition (c); (iii)
s12 = 0,811 = S11, leading to pattern (2) with small n; (iv) s12 = 0,511 = 0, leading to pattern (3) with

small n.

(2) s21 = Sa1: condition (d) is satisfied for any values of feasible s1; and s12. It follows from condition (c)
that (i) s12 > 0 = s11 = S11, leading to pattern (2) with large n; (ii) s11 < S11 = s12 = 0, leading to
pattern (3) with medium n; or (iii) s1; = S11 and s12 > 0, leading to pattern (3) with large n.

We have thus shown all the three possible patterns.

1( A A

Note that for each pattern ¢, the service capacity 5;(n) increases with n from n = 5;7"(n{"), where s = nj

is equal to the constant service capacity in zone (2), and up to n = n4', the right end of zone (3). This also



implies that ng = min,; {5;7*(n{")}. -

Next we prove the monotonicity of the per-driver profit rate with respect to n in zone (3).
4.

Lemma S-2. Per-driver profit rate under control regime A, wa(n), is decreasing in n for n € (n§', n4

Proof. Substituting § and 7 from Proposition 4 into (12d) yields

i sone (1) (n < 1),
wa(n) = Gp—c)s—cr _ S(p—c) zone (2) (nf' <n < ng'), (8.19)
" Ll(Gp—¢)5* — 7] zome (3) (n <n <nf),
L(3pS — en§) zone (4) (n > nj)

Lemma S-1 shows that for participating capacity n € (ng, nf,ﬂ, the optimal capacity allocation may alternate
among three patterns characterized by s;(n), with service capacity s;(n) for ¢ = 1,2, 3. To prove this lemma,

we show that the per-driver profit rate is decreasing for n varying within each of the 3 patterns or at feasible

transitions between patterns. First, note that n = g(s) in zone (3) (see (S.9)) from the proof of Lemma S-1.

Hence On/0s;; = 0g(s)/0s;j. Then:
(i) Within pattern (1): only so; is increasing,

= —etz] (342) 0 1Gp 95 — el

7' (n =
2
Se2Aptiz (Og(s)\ Su(yp —c) + Si27p
Rl 1+ . t <0.  (S:20)
2 2 (821 + S22)7p — (821 + S22 + s21 ﬁ) ¢
(if) Within pattern (2): for small n, so1 is increasing while s15 = 0,
5 ta| (297 -
[('yp —c)— ca} ( ) ) n—[(p — )3 — cri2]
' (n) = 5
n
2
Se2Aptiz (Og(s)\ S1(p — ¢
= —77 8T 1+ - ; < 0. (8.21)
= 2 (s21 + S22)7p — (821 + 522 + 521 ﬁ) ¢
For large n, so1 = S9; and si5 is increasing,
SN EITONE. . -
) Ap ( T ) n—[(p — ¢)s — cr12)]
' (n) = . ~0. (S.22)

n
Note that 7(n) is continuous at the turning (non-differentiable) point where s = (S11,0, Sa1, Sa2).

(iii) Within pattern (3): for small n, so; is increasing while s1; = s12 = 0,

w'(n) = 5 =

(v —c)—ctl—z] (ag(s))_ln—[(’ —¢)3 — cri2] 5 -1
, P to1 0s21 TP 12 Sayptiz ((0g(s)
- o5 <0. (5.23)
21

n n? o

For medium n, so; = So1, s11 is increasing and s15 = 0,
- ag(s)\ ! _ _
, (=) (%5, ) n—I[(Op—c)s—cra

m'(n) = 3 =0. (S.24)




For large n, s91 = S21, 811 = S11 and s15 is increasing, we have the same (S.22). Note that 7(n) is contin-

uous at the two turning (non-differentiable) points where s = (0,0, Sa1, S22) and s = (S11,0, Sa21, S22).

As n increases, an optimal transition from pattern i to j at n must satisfy

Si(n) =3;(n) and 3'(n7) <35’ (nh). (5.25)

Namely, patterns ¢ and j have the same service capacity at transition n, and the service capacity increases

faster after the transition. We then discuss all three possible transitions.

(i)

Between patterns (1) and (2), it is only optimal to transit from (1) to (2). Recall pattern (2) given in

Lemma S-1, n can be small or large at the transition. If n is small such that ss; is increasing while
S12 = 0 at the transition, we have S1 = (Sll,SlQ,Séll),SQQ),SQ = (511,078521),522).1 By S§1 = S2 in

(S.25), there must be 3(211) < 3521) and hence

-1 -1
_ dg(s) Jg(s) —
g ("):<6Z§?> <(agsg%>> —Ew

where the inequality follows from 82¢(s)/ds3; < 0 given in (S.8). Therefore, (S.25) implies that the
transition must be from pattern (1) to (2): (51175’12,8511),522) — (511,075521),522). Obviously 712

jumps up and m(n) jumps down at the transition.

If n is large such that so; = S9; and s12 is increasing (or just starts increasing from 0) at the transition,

we have s; = (511, S12,821,522), 82 = (511, 12,521, 522). There must be 57'(n™) < 53'(n™") since
otherwise
ng ng
silnd) =si(n) + [ st'@)de > 50 + [ s n)ds

>sin)+ [ s e s + [ 5 (@)ds = s3lnd),

where the first inequality follows from 37'(z) = (9g(s)/0s21)~" with g(s) = z and §%g(s)/ds3; < 0
given in (S.8), the second inequality is by the opposite assumption that 57'(n) = 57’(n~) > 53'(n™), and
the next equality follows from 57(n) = 33(n) (at transition), 53'(x) = (9g(s)/ds12)~* with g(s) = z,
and 92g(s)/0s3, = 0 given in (S.8). Therefore, (S.25) implies that the transition must be from pattern
(1) to (2): (Si1,S12, 821, S22) — (S11, S12,521,522). Similarly, r12 jumps up and 7(n) jumps down at
the transition.

Between patterns (1) and (3), it is only optimal to transit from (1) to (3). Recall pattern (3) given in

Lemma S-1, n can be small, medium or large at the transition. The case where n is small (such that sq;
is increasing) or large (such that s1 is increasing) can be shown identically as above. For the case where
n is medium, such that s1; is increasing (or just starts increasing from 0) while s12 = 0, s91 = So1 at the
transition, we have s; = (511, S12, 821, 522), 83 = (511, 0,521, S22). There must be 57'(n™) < 53'(n™)
since otherwise

ng

s1(ng) =51(n) + / 51’ (2)dx > 51(n) + / 51’ (n)dzx

n n

>351(n) + /n3 gl(nJr)dx =353(n) + /n3 E/(x)dx = E(ﬂ?),

A
n3

1We use superscript numbers to distinguish patterns under consideration.



where f:§ 53’ (z)dx is an integration from n to 337 1((S11,0, S21, S22)) and then to n4'. The reasoning
for the (in)equalities is analogous to that in above part (i). Therefore, (S.25) implies that the transition
must be from pattern (1) to (3): (S11, S12, $21,522) = (811, 0,521, 522). Apparently r12 jumps up and
m(n) jumps down at the transition.

(iii) Between patterns (2) and (3), it is only optimal to transit from (2) to (3). Recall patterns (2) and

(3) given in Lemma S-1, the capacity allocations are the same in the case where n is large (such that
$11 = S11, 821 = So1 while s15 is increasing), thus transitions must happen when n is not large, where
s12 = 0 is in common. Furthermore, when n is not large, there is only one case under pattern (2)
where s9; is increasing, and there are two cases under pattern (3): small n where s17 = 0 and so1 is
increasing, and medium n where so; = So1 and s1; is increasing. This shares a similar structure as the
discussion between patterns (1) and (2) in part (i) above, so we omit the details here. Similarly, note

that the transitions, if any, are always from pattern (2) to (3).
O

Proof of Proposition 5. From Lemma S-1, it is optimal to reject rider requests at the low-demand location
for some n in zone (3) if and only if pattern (2) or (3) provides the largest service capacity at some n €
(ng',ng), ie., In € (ng,ng) such that 57(n) < max;c(s,3} Si(n). We need to compare the three patterns in

terms of their service capacity 5;(n), i = 1,2,3. We have the following three observations.
(i) At the right end of zone (3), 37(n4) = 52(n4') =33(n4') = 5.

(ii) For n close to nj (n — nj ), it follows from Lemma S-1 that pattern (1) has s1(n) = (Si1, S12, S21, S22)
with so1 varying, while pattern (2) and (3) both have sa(n) = s3(n) = (S1i1, s12, 521, S22) with s12

varying. Therefore we have

. 05/0s91 (8g(s) >_1
L A = —_—-w-w — > O,
5= (n3) 09(s)/0s21 |4_g 0s21 |,_g
09(s)/0s21  |,_g (0g(s)/0s21)3 | _g
i.e., s7(n) is strictly convex and increasing in n near n?. And
— _ 05/0s12 dg(s) -
! AN =/ Ay —
52_(n3 ) = 53_(7?,3) - ag(S)/8512 s ( 8812 s )
953" (ng)/0s12 02g(s)/0s2
5" (nA) =53 (nd) = 3 _ 12 -0,
2 (n3 ) 3 (ng ) 89(5)/8812 g (8g(8)/8512)3 s

i.e., 53(n) and 33(n) both increase linearly in n near nj.

(iii) The proof of Lemma S-2 establishes that any optimal pattern transitions as n increases in zone (3)
must be from pattern (1) to (2), from pattern (1) to (3), or from pattern (2) to (3)—mnot vice versa.

Using the above observations, the sufficient and necessary condition that pattern (2) or (3) provides the
largest service capacity at some n € (ng',n3') is
52 (nd) =53 (nf) < 57__(nd). (5.26)

To see this, if (S.26) holds, observation (i) and (ii) immediately imply that 53(n4 ) = s3(ng ) > 57(n4 "),

hence patterns (2) and (3) provide the (same) largest service capacity close to n4. On the other hand, if



(S.26) does not hold, observation (i) and (i) imply that 53(n4 ") = 53(ng ) < 51(ng ), i.e., pattern (1) is
optimal near n4. It then follows from observation (iii) that there is no transition from pattern (2) or (3) to
pattern (1) as n increases in zone (3), hence pattern (1) is optimal throughout zone (3). Therefore (S.26) is
sufficient and necessary for pattern (2) or (3) to be optimal somewhere in zone (3).

We now translate (S.26) to condition (36) in the proposition. Putting the first derivatives in observation (ii)

-1 -1
into (S.26), we get (ag(s) S) < (aagT(;) S) . Using (S.5) and (S.6) in the proof of Lemma S-1, this

8512 s=
becomes
So1(1+4 §2) + Sao _ t1o (S11(3p = ¢) + S127p) San 712 _
- - Ap > 1+ o + 2 7P-
(S21 + S22)7p — (Sﬂ + S22 + SQlﬁ) ¢ 2 [(521 + S22)7p — (521 + S22 + 521%) C}
Applying the ratios defined in (35) and with algebraic rearrangement, we get inequality (36). O

S2 Extension to General Networks

In this section we extend the model to general networks and provide additional numerical results for the

three-location networks in Figure 5.

S2.1 Model Primitives

Consider a general L-location network with location (node) set V' = {1,..., L} and route (arc) set V x V.
Denote by t € RiXL the (constant) travel time matrix and by A € RiXL the potential demand rate matrix
(given rider price p per unit of travel time). Drivers’ profit and participation have the same structure as
described in §2.1. As direct extensions from the two-location network, denote by A € RiXL (A < A) the
effective demand rate matrix, v € Ri“‘ (with zero diagonal elements) the repositioning rate matrix, and
w,q € Ri the steady-state waiting time and queue length vectors, respectively. Denoting n(\,v) € H =
{ne RiXL :n1l = 1} as the matrix of steady-state repositioning fractions resulting from A and v, we have

Zkev ik .
D rey Cintrin) J=t .
nij( A v) = kev T i,j €V. (S.27)
Vij . .
Zkev()\ik+yik) i
The steady-state system constraints include: (i) flow balance at each location (outflows equal inflows),
YievNigtvig) =3 ey (Njwtvin), Vi € V., and (ii) total capacity > 2, 5oy (Nij+vij)ti+2 ey [wi D iey Aij] =
n.
Similar to the two-location network model, per-driver profit rate can be computed in two ways: (i) as

the per-driver proportion of the cumulative driver profits:

7O ) = D2 Bevge Mty = e Vil
n

where the number of participating drivers n satisfies the participation equilibrium n = NF(7(A,v,n)), and

(ii) from the perspective of an individual driver circulating through the network, 7(7; A, w), as a function of
her own repositioning strategy (fractions) 77 given the routing probabilities implied by A and the queueing
delays w. In equilibrium, the repositioning fractions n(\, v) induced by the aggregate flow rates (), v) through
(S.27) maximizes the individual drivers’ profit rate, i.e.,

n(\,v) € argmax 7(1; A, w). (S.28)
neH



Since every driver chooses n(\, v), each earns the same profit rate, so that m(n(\, v); A\, w) = m(\, v, n) for all
(A, v,w,n) tuples that satisfy the system flow constraints described above.

Reformulating the Repositioning Equilibrium Constraint (S.28). Let £¥ be the matrix operator
that replaces a matrix’s ith row by the basis vector e;, e.g., £7] denotes the altered repositioning strategy
7 where the driver chooses a pure strategy at location i that repositions only to j. At any location i, let
Ri(n) ={j € V : 1;; > 0} C V denote the subset of locations that are assigned positive probabilities by
repositioning strategy 7, so |R;(77)] = 1 is a pure strategy and |R;(7)| > 1 is a mixed strategy. Since all
locations in R;(7), if adopted as the only repositioning destination under pure strategies, must yield equal

profit rate that is higher than locations outside R;(7), we have
T(EV N w) = F(EFF A w) > F(ER N\ w), Vi k€ Ri(7), 1 ¢ Ri(7).

Therefore, the repositioning equilibrium constraint (S.28) is equivalent to the following constraints (S.29)—
(S.31), where n represents the repositioning fractions n(\, v) determined in (S.27).

F(EIm A w) =& — Gj, Vi, j €V, (S.29)
Cijnij = 07 VZ,] € ‘/3 (830)
§eR:, (e R, neRE (S.31)

S2.2 Steady-State Per-Driver Profit Rate

Given the steady-state system characterized by (A, w), we can formulate an individual driver’s location
visiting process as a Semi-Markov Process (SMP), where the state is the latest location (node) the driver has
visited and a transition occurs when the driver arrives at a location, before making a repositioning decision
on whether to join the (potential) queue or reposition to another location. Then the driver’s cumulative
profit process is a Markov Renewal-Reward Process {7(t)} described by a sequence {(Yj, Xk, W) }ren as
%(Zle X)) = Zle Wi, where state Y} is the location after the kth transition, Xj is the sojourn time
between the (k — 1)th and kth transition (which includes potential queueing delay and travel time in service
or in repositioning), and reward Wy, is the driver profit collected between the (k — 1)th and kth transition
(which includes potential service revenue and driving cost).

The transition probability matrix of the embedded DTMC {Y}} is a function of the driver’s repositioning
strategy 7] given the routing probabilities implied by A, P(7; A), with elements

~ i g . .
N~ if j =i

Pij(ﬁ; )\) = Zkev m)\ i, €V, E ik > 0. (832)
N N2 if 4 1
Mij + MNii Zkgv Mok lfj 7é 2 keVv

If > ey Aie = 0 for some i, then Pj;(1; A) = 1(7 > 0) and Pj;(m; A) = 7i;1(7s = 0) for j # 4. In the case
where ), ., Aix = 0 and 7;; > 0, state i is absorbing. We assume ), .\, Aix > 0 for i € V so that the
Markov chain is irreducible. Let p(7; \) € AL~! be the associated stationary distribution.
The expected reward (driver profit) after a transition into location ¢ is then given by
Ri(i; A) = E(Wiya | Ye = i) = (30 — )i » Z)\ijxtij —c > ity i€V, (5.33)
jev fukev Tk JeEV\{i}

and the expected sojourn time after a transition into location i is

_ N~ Aij ~ .
T A w) = E(Xer1 | Vi =1) =i |wi+ > =ty | + Y Tty i€V (S.34)
. Ekev Aik . .
JjEV JEV\{i}



Let R(1; ) € RY and T(7; A, w) € R% be the corresponding vectors, respectively.” The following proposition
gives the steady-state driver profit rate by the renewal reward theorem.

Proposition 1. An individual driver’s expected steady-state profit rate is a function of her repositioning
strategy 1] for system state (A, w), given by
o m(t 17 TIr— Pe(q; MV YR(m; A
7(; A\, w) = lim @ =1 _ ;1[ ~(77 )] N(n ) ,
tmoe ey [T = P A)]TTT(; A w)

where II; and T are the expected cycle profit and cycle length, respectively, with cycles defined as consecutive

(S.35)

arrivals at location 1 (before joining the queue or repositioning), and P° = [0, Py 2,--- Py 1] is the P(7; \)
matriz with first column replaced by 0.

Proof. Let II;,i € V be the expected profit collected by a driver starting from location i (before joining the
queue or repositioning) and ending at coming back to location 1, and II the corresponding vector. We have

M=in Y = Z [(Gp = )ty + LG # D]+ D iny(—ctyy + 1),
kev A

JEV JEV\{1}
=0 > = — Oty + MAC £ D] + Y i (—cty + LI £1)), jeV\{1}.
lev Zkev ik 1evV\{j}

In vector form and using (S.32) and (S.33), we can derive
I = P°(; AT + R(7; \) = I = [ — P(; )] 7' R(7; A).

Let 75,4 € V be the expected duration starting from location ¢ (before joining the queue or repositioning)

and ending at coming back to location 1, and 7 the corresponding vector. We have

- A . ~
1T =M1 |W1 + Z Z 1 (tlj + Tj (] 7é 1)) + Z nlj(tlj + Tj)7
JEV kev A JEVA{1}

T =T W+ Y ZAﬂ)\_k(tﬂ +rllA D))+ D Tulta+nll£1), jeV\{1}.
lev ~keV I 1eV\{s}

In vector form and using (S.32) and (S.34), we can derive
T =P N7+ T A w) = 7= [I = P°( )] 7 T(7; A, w).

It follows from renewal reward theory that

I e[l = PP M) R(: A)

(A w) = m e [I = Po( )] 1T (7 A w)

S2.3 Three Control Regimes: Problem Formulations

We now formulate the platform’s revenue maximization problem under the three control regimes.

2The above quantities can be expressed in compact matrix/vector form as
P(n; A) = diag(D(n)) [diag(A1) ' A] + 7 — diag(D (1)),
R(7; ) = (p — c)diag(D(n)) [diag(A\1) ™ (Ao )1)] — ¢ [ (7 — diag(D(m))) o t] 1,
T(7; A\, w) = diag(D(7)) [w + diag(A1) ™" (Ao )1)| + [ (7 — diag(D(®))) o t] 1,

where diag(a) generates a diagonal matrix from vector a, and D(A) generates a vector from the diagonal elements of matrix

A.
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Centralized Control (C). This benchmark regime can be formulated as the following optimization problem.

(Problem C)  max () :=yp > Nijtie (S.36a)
T i,jEV
s.t. Z()\” + l/ij) = Z()\jk + ij), Vi ev, (S36b)
eV keV

Z (>\ij + l/ij)tij + Z[wz Z /\ZJ] =n, (S36C)

1,jEV i€V jEV
0<A<A v>0,w>0, (S5.36d)

Yp — C . )\Ztl—c i Vi'ti'

T\ v,n) = 0P~ ) igev s Ligev Vil : (S-36¢)
n=NF(r(\v,n)). (S.36f)

For fixed capacity n the problem for regime C is a simple LP given by
IIo(n) = gnax{ﬂ()\) : (5.36b)—(S.36d)}. (S.37)
VW

Admission Control (A). Representing the repositioning equilibrium constraint (S.28) using (S.29)—(S.31)
together with (S.27) and (S.35), the platform’s problem can be formulated as an MPEC (Mathematical

Program with Equilibrium Constraints):

(Problem A) | max {IT(N\) : (S.27),(S.29)—(S.31), (S.35), (S.36b)—(S.36f) }. (5.38)

Vw,n,8,¢

For fixed capacity n the problem for regime A is a nonlinear problem given by
II(n) = \ maxE C{H()\) : (S.27),(S.29)—(S.31), (S.35), (S.36b)—(S.36d) }. (5.39)

Minimal Control (M). Under pro-rata (FIFO) matching, we need the following additional admission

constraints: The effective demand rates are proportional to the potential demand at each location:

Nij = kildij, 0<k; <1, Vi, jeV, (S.40)

iJ
where k; is the service rate at location i. Drivers cannot be repositioning out of location ¢ if the potential

rider demand at that location has not been fully served, i.e.,

(I1—ki)vi; =0, Vi,jeV, (S5.41)
and demand requests originating at location i can only be lost if this location has no supply buffer, so no
drivers are waiting, i.e.,

(1—-kj)w; =0, VieV. (S5.42)
Under this regime, the platform’s problem can be formulated as:

(Problem M) max C{H()\) : (5.27), (S.29)—(S.31), (S.35), (S.36b)—(S.36f), (S.40)—(S.42) }. (S.43)

7V)w7n1 )

For fixed capacity n the problem for regime M is the nonlinear problem

Ma(n) = | max, {IT(3): (3.27), (5.29)(S.31), (5.35), (S.36b)(.36d), (5.40)~(S.42)}. (S.44)

Av,w,n,g,
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S2.4 Additional Numerical Results for Networks in Figure 5

In §6 we introduced several types of three-location ring network in Figure 5 and discussed main findings
from network I under Admission Control. Here we present detailed capacity allocation for network I under
Minimal Control (Table 1), as well as for networks II and IIT under Minimal Control and Admission Control
(Tables 2 to 5). Note the common setting of unit travel times, rider price p = 4, commission rate v = 25%

and driving cost ¢ = 1.

q1 q2 11 712 713
0.00 0.00 . 0% 0%
0.36 0.00 . 0% 0%
1.36 0.00 . 0% 0%
2.36 0.00 . 0% 0%
3.36 0.00 . 0% 0%
4.36 0.00 . 0% 0%

5.36 0.00 0.00 0% 0%
6.36 0.00 0.00 0% 0%
7.01 0.00 . 06% 0% | 4%
7.06 0.00 0.00 [F87% 0% 0 13%
7.06 0.00 0.00 792 0% B 21%
7.06 0.00 0.00 [F73% 0% E1 27%
7.07 0.00 0.01 [F67% 0% 1 33%
7.30 0.00 0.06[E—63% 0 17%H 20%
7.44 0.00 0.23|E560% H 16% 1 24%
7.68 0.00 0.46|EE58% E 19% E1 24%
7.86 0.00 0.61E55%E 24% E 21%
8.04 0.00 0.76|B53% 1 28% E  19%
8.14 0.00 0.86[F50% 1 33% H  17%
8.52 0.33 114\ 150% 1 33% 0 17%

n k1 k2 k3 r21 r23 q1 q2 q3 n2l  »22 723
7 [EEF.00[F0l67 FE1.00/E1 0.33 0.00 0.00 0.00 0.00 0.00 0% 0%
§  [EET.00|F0l67 EETT.00/ T 0.33 0.00 0.00 0.00 1.00 0.00 0% 0%
9 [WEET.00(F0l67 BETT.00 T 0.33 0.00 0.00 0.00 2.00 0.00 0% 0%
10 (W97.00 B 0l67 BTT.00 1 0.33 0.00 0.00 0.00 3.00 0.00 0% 0%
11 (W7.00 (B 0l67 BTT.00 1 0.33 0.00 0.00 0.00 4.00 0.00 0% 0%
12 [B9.00 [ 0l67 EE 100 1 0.33 0.00 0.00 0.00 5.00 0.00 0% 0%
3% BE97% 0%

[ [
14 (EE7.89(F0.88 FET.00/ 1 0.380  0.38 0.00 0.00 5.73 0.00[0  11% BET89% 0%
15 (WS40 00 00 1 0.40|E1 0.60 0.00 0.11 5.89 0.00[H  17% BET83% 0%
16  |FEEgI40 |F1.00/ 00/ 1 0.40 (1 0.60 0.00 0.52 6148 0.00[0  17% EETR3% 0%
17 100/ FETT00/ T 0.40 [E1 0.60 0.00 0.93 7.07 0.00[H 17% BETR3Y% 0%
18 (MNgI40 [MT00 BTT00 1 0.40 B 0.60 0.00 1.33 7.67 0.00H 17% BEER3Y 0%
19 |Mgl40 |B1.00/ BETT.00 1 0.40 ] 0.60 0.00 1.74 8.26 0.00[E  17% BEET83% 0%
20 [EEEgl47 (00 00 041 (EH 0.591  0.06 2.10 8.78 0.00[H  16% EE82% | 2%
21 (g6 (100 FETT00 T 10.48 [ 0520 0.38 2.24 8.99 0.00(0  13% BEE77% 0 10%
22 (FEEOM@Ss (RETTL00 FETTL00 058 (0 0.42 BT 0.88 2.25 9.00 0.00(0  10% BET70% E1 20%
23 (M0N0 (FEIL00! BETTL00 T 0l67 |0 0.33 BEI1.37 2.25 9.00 0.00(1 7% BET64% B 29%
24 100/ ETT00/ 078 (I 0.22 IETISS 2.25 9.00 0.00[l 4% BT39% 1 37%
25 100/ FETT.00/ 088l 0.12 BEE238 2.25 9.00 0.00|l 2% BEE55% E143%
26 100/ 1.00 097 0.03 BT 87 2.25 9.00 0.00 0% B 51% E149%
27 T 00 BT 00 BT 00] 0.00 B3.00] 2.43 9.29 0.29 0% E150% EE50%
28 100/ 1.005 1.00 3000 | 2.96 9.52 0.52 0% I 50% B 50%

Table 2: Optimal capacity allocation for network IT under Minimal Control (M)
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n service s11 522 532 r23 gl q2

10 9100 1.00 1.00 1.00 0.00 0.00 1.00

11 9100 1.00 1.00 1.00 0.00 0.00 2.00

12 9100 1.00 1.00 1.00 0.00 0.00 3.00

13 9100 1.00 1.00 1.00 0.00 0.00 4.00

14 9100 1.00 1.00 1.00 0.00 0.00 5.00

15 on2 1.00 1.00 1.12]l 012 0.14 5.62

16 32 1.00 1.00 1.32]0 032 0.37 5.98

17 %54 1.00 1.00 1.54|0 0.54 0.58 634

18 ori7 1.00 1.00 1.77|E1 0.77 0.80 6l67

19 10200 1.00 1.00 2.00[E 1.00 1.00 7.00

20 10.25 1.00 1.00 2.25(011.25 1.20 731

21 10.50 1.00 1.00 2.50 I11.50 1.38 7.62

22 10.76 1.00 1.00 2176|176 1.57 7.90

23 11.04 1.00 1.00 3.04 2104 1.74 8.18 .

24 11.32 1.00 1.00 332 (232 1.90 8.45 0.00 [I56%|I144%
25 11.62 1.00 1.00 3.62 262 2.06 8.70 0.00 [I53%[I147%
26 11.92 1.00 1.00 3.92|W293 2.21 8.94 0.00 [ 51%[F149%
27 12.00 1.00 1.00 4003200/ 2.65 9.17 0.17 :BO%Ii:BO%
28 12.00 1.00 1.00 4.00 3.00] 2.96 9.52 0.52 [ 50%[E150%

Table 3: Optimal capacity allocation for network II under Admission Control (A)

S3 Driver Supply and Actual Gains in Platform Revenue and Per-Driver Profit

In this section we illustrate the impact of the driver supply characteristics, specifically, the outside opportu-
nity cost distribution F', on the actual platform revenue and per-driver profit gains, compared to the upper
bounds in Propositions 8 and 9, and on the tension between the drivers’ and the platform’s gains. For
simplicity we focus on the gains from admission control, i.e., regime A over M. (Similar effects determine
the actual gains from repositioning.)

Figure 1 illustrates these gains for two opportunity cost distributions. Panel (a) presents a case where
admission control yields large benefits for the platform as a result of a large increase in driver participation,
and consequently only small benefits for individual drivers. Specifically, the top chart in panel (a) shows
for the three control regimes the per-driver profits that are non-increasing functions of the capacity, and the
increasing marginal opportunity cost function F~! (n/N). Achieving the upper bound on platform revenue

gains from admission control requires two conditions, namely, n, = nd or equivalently, F~!(nd!/N) =

ma(nd!), and n* = ng'. The first condition holds in the example, the second condition requires infinitely

elastic supply around the profit level 7, (n3?), i.e., that F grows sufficiently fast around this point such that

n4 — nd’ additional drivers join if the per-driver profit is slightly larger, so that F~'(ng/N) = mas(ng).
The example depicted in Figure 1 (a) shows how the upper bound can be approached if the supply increases
substantially for a moderate change in per-driver profit rate.

Panel (b), in contrast, presents a case where admission control (under regime A or C) yields the maximum
achievable per-driver profit gains as a result of a small increase in driver participation, and consequently
only modest platform revenue gains. As shown in the top chart of panel (b), in this case the marginal
opportunity cost function yields the same equilibrium capacity under minimal control as in panel (a), i.e.,
F=Y(nd/N) = mar(nd!); however, the driver supply is so inelastic that the number of drivers willing to
participate at the maximum profit rate (Fp — ¢) is smaller than the minimum number required to serve all
riders without repositioning, that is, n% < n4! where F~Y(n%/N) = 7p — c. The platform’s commission is

too high to entice more drivers to participate.
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service k1 k2 k3 r21 r23 r31 q1 q2 q3 n21  n22 723 n31 733
0.00 0.00 0.00 0.00 0.00 0% 0% 0%
0.00 0.00 0.00 0.13 0.00 0% 0% 0%
0.00 0.00 0.00 1.12 0.00 0% 0% 0%
0.00 0.00 0.00 2.12 0.00 0% 0% 0%
0.00 0.00 0.00 3.12 0.00 0% 0% 0%
0.00 0.00 0.00 4.12 0.00 0% 0% 0%
0.00 0.00 0.00 5.12 0.00 0% 0% 0%
0.17 0.00 0.00 5.53 0.00 0% | 5% 0%
0.19 0.00 0.00 6.00 0.36 1% ] 6% 0%
0.17 0.00 0.00 6156 0.69| 3% 1 5% 0%
0.04 0.00 0.00 6182 0.88(0  11% BEERTY% | 1% 0%
0.00 0.00 0.00 7.10 1400 14% EETRE% 0% 0%
0.00 0.00 0.00 730 2200 14% BETR6% 0% 0%
0.00 0.00 0.00 7.50 3.00(0  14% EETRE% 0% 0%
0.00 0.00 0.00 7.0 3.78|0  14% BETR6EY% 0% 0%
0.00 0.00 0.00 7.90 4600 14% EETREY% 0% 0%
0.00 0.00 0.00 8.10 5370 14% BETR6% 0% 0%
0.001  0.06 0.00 8.18 5960 17% B83% 0% | 2%
00001 0.12 0.00 8.30 6150|E  19% METRIY 0% | 4%
0000 0.17 0.00 8.45 7.07|E  20% BEETR0Y% 0% | 5%
0000 025 0.00 8.55 7.58|E1 23% WETTT% 0% I 8%
0.00 £ 035 0.00 8.61 7.95|E1 26% BETT74% 0% 0 10%
0.00 E1 0.48 0.00 8.66 8.17 (1 29% BMETT1% 0% 0 14% BITR6%
0.00 EZ1 0.63 0.00 8.69 8.34 (1] 33% B67% 0% B 17% BEER3Y,
0.00 1 0.73 0.00 8.83 8.66 (I 35% M65% 0% B 20% BEETR0%
0.00 1089 0.00 8.88 8.74 [ 38% I 62% 0% 1 23% IET77%
0.00 EE11.00 0.00 9.00 9.00 1 40% B60% 0% 1 25% B75%
0.00 BE11.00 0.33 9.33 9.33/|I1 40% I60% 0% I 25% IET73%
0.00 F11.00 0.67 9.67 9.67|140% I 60% 0% Il 25% IN73%

Table 4: Optimal capacity allocation for network ITT under Minimal Control (M)

s13 $22 s33 r21 r31 gl q2 q3 721 n22 731 733
1.00 E-1 1.00 1 1.00 0.00 0.00 0.00 1.00 0.00 0% 0%
11 1.00 E1 1.00 E71 1.00 0.00 0.00 0.00 2.00 0.00 0% 0%
12 1.00 E21 1.00 BT 1.00 0.00 0.00 0.00 3.00 0.00 0% 0%
1.00 E21 1.00 E21 1.00 0.00 0.00 0.00 4.00 0.00 0% 0%
1.00 71 1.00 71 1.00 0.00 0.00 0.00 5.00 0.00 0% 0%
1.00 =1 1.00 =1 1.00[I 0.12 0.00 0.00 5.62 0.14]l 4% I96% 0% BET00%
16 1.00 E1 1.00 71 1.00|H  0.32 0.00 0.00 5.98 037|1  10% 0%
17 1.00 E21 1.00 E1 1.00(E1 0.54 0.00 0.00 6.34 0.58(H  15% MET85Y% 0%
18 1.00 E21 1.00 E71 1.00 (B2 0.77 0.00 0.00 6167 0.80|E  20% BET80% 0%
19 1.00 E1 1.00 EZ1 1.00 [EE701.00 0.00 0.00 7.00 1.00 (] 25% BET75% 0%
20 1.00 E21 1.00 E71 1.00 [BET125 0.00 0.00 731 1.20 (0 29% BET71% 0%
1.00 E1 1.00 I 0.00 0.00 7.62 1.38 | 33% BE67% 0%
1.00 1 1.00 1 0.00 7.91 1.56 |01 37% BE63% 0%
0.00 8.15 1.85 |1 40% BE60% 0%
0.00 8.20 2.80 1 40% BE60% 0%
0.00 8.25 3.75 |1 40% BE60% 0%
0.01 8.3 4.68 1 40% BE60% 0%
0.02 8.37 5.60 (B 40% BE60% 0%
0.05 8.45 651 (1 40% BE60% 0%
0.05 8.50 7.44 |1 40% B 60% 0%
0.00 8.51 8.41 [T 40% EE60% | 2%
0.00 8.53 8.64 |1 39% B 61% E1 19% BETR1Y%
0.00 8.77 8.82 |1 39% I 61% 1 22% BE78%
0.00 9.00 9.00[F140% B60% E1 25% B73%
0.33 9.33 9.33|I1 40% IET60% 1 25% METT73%
1.00 1 1.00]B 200/ 1.00)l 0670 9670 9.67[E140% B 60% 1 25% BT75%

Table 5: Optimal capacity allocation for network IIT under Admission Control (A)
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Figure 1: Impact of admission control on the equilibrium capacity, per-driver profit, and platform revenue

(§=(3,1,4,6),S =14, N =21,t = 1,7 = 0.25,p = 3,c = 0.45)
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