Month: June 2024

Celebrating Pride Month: Supporting an inclusive community


June is Pride Month when the LGBTQ+ communities come together to celebrate the freedom to be their authentic self. During this time, we also recognise the influence LGBTQ+ people have had on history around the world.

Pronoun badges and rainbow lanyards play a valuable role in supporting our community and fostering a more inclusive environment. We are delighted to share we now have new pronoun badges and rainbow lanyards for everyone in the Department of Materials. These were designed with support from our Equality, Diversity, and Culture Committee.

Below, some members of our LGBTQ community and allies share what pronoun badges and rainbow lanyards mean to them.

Darakshan Khan, EDCC Committee Co-Chair 

“Our new lanyards and pronoun badges show our commitment to promoting inclusivity and equality in the Department. By wearing them, we can actively show our support for the LGBTQ+ community.”

Evan Fisher

Evan Fisher, Research Postgraduate

“When I see people wearing badges or lanyards, I know that the people around me will be supportive and that I don’t need to worry about being myself. As someone who finds stating preferred pronouns quite difficult or awkward, our new badges are a subtle way to express that aspect of yourself by showing, not telling. Wearing a pronoun badge is important to me because allows those who aren’t as set in their preferred pronouns to feel comfortable in experimenting with different badges. This allows some people the ability to start exploring their gender identity, knowing they are in a judgement-free environment.

The lanyards are a great way to show support for the LGBTQ+ community, and if some people aren’t comfortable with their preferred pronouns yet, then they help convey support. By colour-coding them, with increased familiarity, it should be possible to know someone’s preferred pronouns without reading!

Dr Shelly Conroy

Professor Aron Walsh, Professor of Materials Design

“I wear a rainbow lanyard as a sign of inclusion for our staff and students. It is essential that the LGBTQ+ community feels welcome from the moment they enter our department. Over the years, our rainbow lanyards have stimulated many conversations, from how we can improve and celebrate our department’s diversity.”

Dr Andrew Cairns, Lecturer in Materials Chemistry

For me, it’s important to recognise and celebrate everyone’s identity; pride and pronouns are just some ways we can do this. Creating a space for individuality at work sends a message that everyone is welcome here and will be respected.”

Dr Shelly Conroy, Lecturer in Functional Thin Films & Microscopy

“Visibility is key to a welcoming environment. I hope our new lanyards and pins help our students and staff feel at home in our department and Imperial community.”

Dr Jessica Wade, Lecturer in Functional Materials

“I wear a lanyard and a pronoun badge to tell the world that Imperial is a safe space, helping to overcome the discrimination LGBTQ+ people face and that we’re committed to building a more inclusive future.”

If you are a staff member or student in the Department of Materials, you can collect a new rainbow lanyard or pronoun badge from Monday 1 July, onwards. 

Three reasons why I enjoy studying Materials Science and Engineering at Imperial

Name: Kevin Chen

Position: Second-year Undergraduate Student, MEng Materials Science and Engineering in the Department of Materials. 

In this blog post, Kevin explains the three reasons why he enjoys studying Materials Science and Engineering at Imperial. 

1: Combination of coursework and exams

One of the top reasons I enjoy studying Material Science and Engineering at Imperial is the mix of coursework and exams within the degree program. I’m currently going strong in my second year (I hope!) and I have already completed over ten labs, where I’ve conducted interesting experiments like polymer synthesis and cooling curve measurement.

I’ve also worked in groups to undertake computing and design challenges, some of which lasted up to half a year and included working groups of more than ten people! These labs and projects not only helped consolidate the knowledge from lectures and develop collaboration skills, but they have also helped me get to know many people from the cohort, some of whom are now my closest friends. 

2: Skills I can apply in the real world

It is always exciting when what you learn connects with the real world. During my summer internship at SKF Sweden, I saw and applied many skills from my first year. The sample preparation skills I learned came in handy when I cut, ground, and polished various bearing samples. My understanding of steel phase diagrams also allowed me to hold insightful conversations with the company’s heat treatment expert. Now in my second year, many things that I didn’t understand before are becoming clearer and clearer. 

3: Positive community 

In my opinion, the Department of Materials is a very positive and close-knit community. We are encouraged to learn together and help each other, and the department listens to student feedback and tries to support the students better every year. One of my favourite things is definitely the “pet-a-dog” sessions during exam season, where students are invited to sign up for a session to be blessed by a living fluff. My only complaint was how fast my allocated time seemed to finish!  

As a competitive swimmer, I train and race with the Imperial Swimming Club, where I meet students who, while challenged by their degrees, still find time to have fun and enjoy life. Being surrounded by such people is a privilege.

Alumni spotlight: Inês Gomes Pádua

Name: Inês Gomes Pádua

Degree: MEng Materials Science and Engineering in the Department of Materials

Graduation Year: 2021

Current role: Heat and Mass Transfer Engineer at ASML San Diego

What is your current job?

I work as a Heat and Mass Transfer Engineer at ASML San Diego. ASML is a Dutch company based in Veldhoven, NL, with several offices worldwide. The San Diego office is responsible for developing the light sources of ASML’s lithography machines.

What do you do in your job?

I work on EUV (Extreme Ultra-Violet) light sources for the most advanced lithography machines that ASML produces. Specifically, I work in tin management: the light needed to achieve the EUV wavelengths is produced by aiming a powerful laser at minuscule droplets of tin to create a plasma. So, how do we ensure that only the light is transmitted to the rest of the machine and that the tin plasma, vapour and debris are properly disposed of? That’s where my team comes in!

Why did you choose a career in Materials Science and Engineering?

I first became interested in Materials Science and Engineering because I wanted to understand what makes certain things more fragile than others or more susceptible to breaking and failure! This is only the smallest part of Materials Science and Engineering, as I would discover during my time at Imperial.

Working in the semiconductors industry is very rewarding and, honestly, sometimes a little surreal. I work at one of the most important companies in the chipmaking supply chain. It’s incredible technology. The kind of innovation supported by newer, more advanced microchips like the ones ASML helps to manufacture is, simply put, very cool.

What did you enjoy most about the course at Imperial?

I really enjoyed the practical aspect of the MSE course. It’s taught me how to handle laboratory and cleanroom work very well and manage all the unexpected problems that come with hands-on work. It wasn’t always easy, and there were a lot of failed experiments in undergrad, but certainly where I gained the most from.

What is the coolest thing you have done in your career so far?

I have to say moving to California is pretty amazing. I’m so grateful to work at such an international company and to experience a different work culture, a highly specialised team of engineers coming together to push the edges of engineering and physics. And then I can go surfing afterwards! I can hardly believe it myself.

From a technical standpoint, the coolest thing I’ve done so far is contributing to the development and production of the first high-NA EUV light source, which is currently at Intel’s Oregon Factory.

What is your favourite material (and why)?

Bronze. Firstly, there’s an entire era of humanity named the Bronze Age! As someone who works with tin and works with the consequences of tin reacting with other materials, I always find satisfaction in knowing that we’ve conquered bronze.

What advice would you give to your younger self?

Be a jack of all trades! Materials Science and Engineering is one of the most interdisciplinary degrees you can pursue at Imperial. It’s at the crossroads of all sciences and engineering, bringing together a diverse group of minds, skills and ideas!

My degree has enabled me to connect and learn from all my colleagues, correlate seemingly disconnected concepts, and discover new perspectives on problem-solving. Beyond the technical skills, take pride in your hobbies and passions and the skills you learn while playing sports, music, video games, etc. What are you learning could make you a better engineer!