Month: November 2024

Laidlaw Scholars Spotlight: Anica shares more about her project and experience

Anica Tahsin is a second-year undergraduate student in the Department of Materials. In her first year, Anica applied to The Laidlaw Scholars Leadership and Research Programme, which aims to enhance sustainable leadership and stimulate sustainable innovation among a new generation of leaders. The programme uniquely funds up to 25 places annually to undergraduate students in Imperial College London each year, supporting a research project and a Leadership in Action experience, with a unique focus on tackling the 17 UN SDGs.

Anica was accepted and completed a six-week paid research project and a fully-funded leadership project abroad. In this blog post, she shares her experiences and offers advice for students interested in applying for the next cohort.

Why did you apply to the Laidlaw Scholars Programme? 

The Laidlaw Scholars Programme sounded almost too good to be true—a six-week, paid research project on any topic that interests me and a fully-funded leadership project abroad? After completing my first year with Laidlaw, I can confidently say it’s exactly that.

I saw this as an opportunity to meet new people, develop my leadership skills, and learn what it means to be an ethical leader. That’s precisely what the Laidlaw Foundation is all about.

What did your project involve? 

I completed a self-proposed project focused on reevaluating flood assessment in vulnerable communities in Bangladesh. While it wasn’t directly related to my degree in Materials Science, it was a topic I was passionate about and knew I wanted to explore further. Many others pursued projects outside their degree fields, so if that’s what’s holding you back from getting involved, there’s no need to worry!

What did you learn?

At the annual Laidlaw Scholars conference, held at Leeds University this year, I challenged myself to present my research. Even though I’m pretty sure my voice was shaking, it was incredibly rewarding when someone came up to me and shared my passion.

While I initially approached this programme wanting to make as many connections as possible. It was those smaller interactions—finding people with the same drive for change—that truly connected me with others who care about the things I do.

My biggest lesson was that no matter how overwhelming or unfamiliar an environment may feel, there will always be people around who want change. Realising that there are others to support you lightens the fear and burden of taking the first step.

How will this help you in future? 

I chose Materials Science because I believe it’s where I can make the most impact. Whether it’s in climate, sustainability, or everyday life, materials play such an essential role that by working in this field, I feel I can help improve lives, even in small, indirect ways.

It’s a huge plus that my department is so supportive of students stepping out and exploring new possibilities. Next year, I hope to establish a small organisation in my local community in Bangladesh to support women who don’t have access to these same opportunities. I’m currently interviewing young women and girls in schools to understand the obstacles they face and explore ways I might help. It won’t be easy, but I’ll have support when I need it.

What advice would you give to anyone thinking of applying to the Laidlaw Scholars Programme?

I would, without a doubt—one million percent—recommend applying. If you’re driven to make a change, this is the perfect opportunity to do. Even if you’re unsure what you want to research or how you can make an impact, just pick something that interests you and run with it. The Laidlaw coordinators are incredibly flexible, so you can always adjust your topic along the way.

If you’re worried about someone constantly looming over your shoulder, pushing you to work, don’t be. This project is highly independent—you set your own hours and manage your own pace.

Applications for the next cohort of LaidLaw scholars opens on Monday 25 November 2024. Find out more about The Laidlaw Scholars Leadership and Research Programme.

Fellow Spotlight: Dr Siyang Wang on improving energy materials for a net zero future

Dr Siyang Wang is an Imperial College Research Fellow in the Department of Materials. His research investigates how and why materials used in energy applications fall apart. This research includes materials used in nuclear power and batteries and could help avoid catastrophic accidents, like those at Chornobyl and Fukushima, and extend the life of everyday items, such as lithium-ion batteries. In this new blog post, he shares more about his research, why it’s important and how this research could make an impact.

What inspired you to become a Materials Scientist?

I enjoyed Physics at school, so when it came to choosing a university course, I wondered how I could continue studying what I was interested in, while also having the opportunity to work on something directly useful in daily life. Materials science became the answer.

How would you explain your research to someone outside the field?

I mainly work to understand why and how materials used in energy applications (such as nuclear power and batteries) fall apart, so we can prevent them from failing. This research could help avoid catastrophic accidents, like those at Chornobyl and Fukushima, and extend the life of everyday items, such as lithium-ion batteries.

Why did you study this area and why is it important?

Preventing materials from failing is crucial for safety and cost savings. My undergraduate university, Xi’an Jiaotong University, has a strong tradition in materials mechanics research in China. This influenced my decision to specialise in this field. Imperial also has strong expertise in this area, so I continued to work in this area in the Department of Materials.

How could this research make an impact?

My current research aims to contribute to achieving net zero emissions. By proving that the materials used in nuclear power plants are durable and safe, we can promote the development of nuclear energy and reduce CO2 emissions from electricity generation. Similarly, if batteries last longer by reducing internal mechanical degradation, it would lower living costs and enhance their effectiveness for renewable energy storage and grid stabilisation.

Who do you collaborate with at Imperial and beyond?

I work mainly on the micrometre scale (1/1,000 of a millimetre), which is useful but sometimes not detailed enough. Therefore, I collaborate with experts who can examine individual atoms, such as Dr. Catriona McGilvery, Research Facility Manager and Di Wang, Research Postgraduate and soon to be Dr!

Beyond Imperial, I have worked with collaborators in the UK (Oxford and KCL), Germany (Max Planck Institute for Iron Research), Sweden (Linköping University), and Switzerland (Empa). You can read our collaborative work with Dr Aaron Leblanc from King’s College London on the fine-scale structure and chemistry of Komodo dragon teeth in Nature Ecology and Evolution.

If you are dealing with a mechanical degradation issue in materials and want to understand and resolve it, why not get in touch?

What do you enjoy most about what you do?

As an experimentalist, I enjoy the mix of daily lab work, which involves a lot of technological considerations to ensure scientific rigor, and data analysis which tests your ability to apply and expand existing knowledge. I also enjoy learning new techniques, training students, and writing and reviewing papers. These varied activities make it hard to get bored.

What do you enjoy outside of research?

I travel a fair bit (when I’m allowed to). I went to Qatar and the UAE earlier this year, and it was interesting to find out the similarities in local food, markets and lifestyle to Xi’an, the place I grew up in China. Discovering these connections, likely due to historical links via the Silk Road, was fascinating.

What’s something your colleagues would be surprised to learn about you?

I’m actually allergic to chicken and eggs!