Month: June 2022

PRIDE Spotlight: Sophie Kay on supporting LGBTQ+ students and her new radio show

Materials Undergraduate student, Sophie Kay, shares more about the importance of a supportive community, finding her place at Imperial and her new role leading a LGBTQ+ radio station for Radio Society.

Thinking back to when I was applying to university, what I was most excited about was societies. Having heard the rumours that STEM degrees are hard work, I was determined to find my people and have a good time.

I first visited Imperial back in 2017, having travelled down to London with my family. It was my first taste of a possible life at university and to say I was excited was likely an understatement. I spent the 200 mile train journey back home scrupulously scanning the Imperial College Union website for the most interesting societies – Cheese Society (now sadly defunct, RIP Big Cheese), KnitSock, Film Society, then I came across IQ. At this point in my life I was just beginning to accept my sexuality and clung on to any morsel of LGBTQ+ representation I could find. I was a pleasantly surprised at how strong its membership was – and even more pleasantly surprised at how gender-balanced the committee seemed to be.

As I grew to accept myself more, I found myself becoming frustrated with the world around me. The joy brought by a strong community of both LGBTQ+ individuals and allies, such as those found in IQ, Imperial 600 and organisations such as QPOCPROJECT should never be underestimated, both in impact and importance. There is surely no shortage of struggles to be had however, the beauty of being in community with others is to help lighten the load of the bad times and make the good times shine brighter.

Earlier this year, Radio Society advertised an opportunity to have a radio show so I just jumped on it! I’ve been making themed playlists just as a hobby for years now and always wanted to share them beyond Spotify without being too awkward about it so it seemed right up my street. I’ve found LGBTQ+ artists, especially female, transgender and non-binary artists, to be severely underrated so I just wanted to spread the word about my favourites so more people could enjoy their music, every Sunday from 9-10pm on icradio.com.

STEM can feel very homogenous at times, and it’s very easy to let imposter syndrome seep in and make you think that because you don’t see people like you often, that STEM is not for people like you. It can also make you feel pretty uncomfortable to be openly yourself, however, if you know that there are people around who are proud of their identity and supportive of building a more accepting environment, that can have a domino effect.

Celebrating International Women In Engineering Day

Did you know that just 16.5% of the engineering sector are women? 23 June is International Women In Engineering Day, an international celebration to raise the profile of women in engineering and focus attention on the amazing career opportunities available to girls in this exciting industry. 

In the post below, four women in our fantastic community share more about their careers and how they are helping work towards a better future.

Dr Stella Pedrazzini, Lecturer in Engineering Alloys and Metallurgy

I work on the environmental degradation of engineering alloys. I look into the oxidation and hot corrosion of nickel and cobalt based superalloys and aqueous corrosion of steel. To this day, very few research groups around the world work on corrosion due to the challenges involved in this type of investigation. My research group also consists of mostly women – which is very unique in STEM. I also teach the 1st year undergraduate module in Materials Electrochemistry.

My research group is divided by material: we have people working on steels, on nickel-based superalloys, on titanium alloys and more recently on zirconium too. The noble metals are the only ones that don’t corrode (…easily!), everything else is worthy of investigation. Some of the work from my own research group has helped inform the corrosion rates of aero-engines, industrial gas turbines, nuclear reactors and medical implants exposed to body fluids.

I’ve been doing Outreach for ten years, including workshops, talks, and experiments. For me, the motivation for Outreach was primarily the lack of women in Science. My aim is to put the word out there that women can do science and engineering too and it’s important to change perspectives from a young age. For example, when asked to draw a scientist, many primary schoolchildren picture Albert Einstein. However, when asked to draw a scientist after I had presented a talk, schoolchildren were more likely to draw female scientists too!

Dr Jang Ah Kim, Research Associate 

Light contains so much information about all the materials in nature. The more in-depth we analyse all the shades of light interacting with matter, the richer details are revealed and nanotechnology helps boost light-matter interactions. I utilise nanotechnology to develop smart sensing platforms boosting these light-matter interactions to detect disease biomarkers. We expect that the sensing platform would allow for fast screening of diseases, and therefore the early detection and treatment of diseases in the future.

My peer researchers around me are the greatest inspiration. I am in a highly multidisciplinary, international and gender-balanced group, which is very special in academia. In this unique environment, there is always something to learn from the peers – not only about their research topics but also about different viewpoints, problem-solving skills, aspirations and attitudes towards life and career. This is why I have never gotten bored of working in academia, and what inspires me to grow every single day to be a better researcher.

 

Dr Irena Nevjestic, Research Facility Manager

I am the facility manager for the SPIN-Lab research facility in the Department of Materials. SPIN-Lab straddles three faculties at Imperial and the London Centre for Nanotechnology. It is a state-of-the-art hub of magnetic characterisation to study spin-related phenomena which includes equipment for the study of strongly coupled and isolated spins. This combination of techniques is unique and it offers an insight into the fundamental properties of materials but also prospective applications of how these can be utilised.

I meet a lot of different researchers in my role, which I find the most exciting part of running the lab. Since the SPIN-Lab is an open-access facility, I also have the opportunity to work with lots of users on different projects, which I really enjoy. This week, I had the chance to work on something that was completely new to me, which was a great new learning curve!

Dr Reshma Rao, Research Associate

I work on discovering active, stable and low-cost materials that can catalyse green hydrogen production from water using renewable electricity.

I use a range of operando techniques to understand how such materials function and degrade under the harsh operating conditions they experience in water electrolysers. The term operando (Latin word for working) refers to a class of analytical techniques where a catalyst under operating conditions is monitored in real-time and simultaneously characterizes its activity as well as selectivity. Using this atomic-level insight, I design next-generation catalysts for applications in water electrolysers that can enable green hydrogen production on a large scale.

One of the most exciting aspects of research is that my days are varied. Outside the laboratory, I work on data analysis, facilitate discussions of research projects in small groups, draft manuscripts to communicate my results to the wider scientific community and mentor several students. I’m also fortunate to have the opportunity to travel to present my work at conferences and collaborate with researchers at other universities!

Revolutionising Green Mobility: Anjali Devadasan on leading a new start-up

Name: Anjali Devadasan

Position: Undergraduate Student

Anjali  is leading a new start-up called EVA Turbines. The start-up looks into how to decrease greenhouse emissions by generating low-cost renewable energy on the roads. Since its creation, the team have reached the semi-finals of the WE Innovate programme and received offers from Hackspace and Enterprise Labs.  

In this blog post, Anjali explains more about her experience and what inspired her to lead the start-up.

Can you tell us more about your start-up project?

Our project, EVA Turbines, aims to decrease greenhouse emissions by generating low-cost renewable energy on the roads. EVA is an efficient, recyclable, vertical axis wind turbine which rotates due to the air turbulence of passing vehicles.

We are at the early stages, currently prototyping our minimum viable product, and we are very encouraged by the support Enterprise Labs and Hackspace offers. It has now been around six months since starting the project, and the project was simply an idea/concept when I started with WE Innovate. Since then, I have learnt a lot about business (lean canvas models, value propositions, customer discovery, etc.), met many new, inspiring people and formed a great team.

What inspired you to choose this focus for your start-up?

I would like to positively impact the environment and mitigate Climate Change, so I am interested in using technology to contribute towards this. An initial idea from when I was at school has eventually changed and pivoted to become EVA Turbines. This project will likely continue changing as we keep adding ideas and learning from others, but our focus on mitigating Climate Change will always be present.

What is it like leading an interdisciplinary team?

It has been exciting forming the team and working together on the project. We are all passionate about Climate Change and dedicated to making a difference. My team member Yu is also studying Materials Science in my cohort. He focuses on product engineering, having previously worked on other projects such as racing drones and AR glasses. As we are both studying Materials Science, it is interesting when we can apply materials science knowledge to the turbine blades and other components. Ukendar is managing turbine design and development, being our mechanical engineer with experience designing projects such as a 3D-printed sensor for the blind. Mariam studies Geography at King’s College London. She is involved in branding, communication and data analysis, with previous projects related to climate change research, such as a policy proposal for zero-emission vehicles. Having a diverse, interdisciplinary team is exciting, as it means we have a wide range of ideas, can learn from each other and work together to build our skills.

What did you learn and how will this help you in future?

I have learnt a lot from the team, mentors, and the many inspiring start-ups at Imperial. Being part of WE Innovate with an idea is like being on a flowing river; I have been gently pushed forward out of my comfort zone every step of the way. The business coaching, masterclasses and modules have been invaluable, and I especially enjoyed the masterclass about effective communication during pitching, which involved two magicians from Breathe Magic teaching us magic! I am truly grateful for the opportunity and would recommend everyone to explore their ideas further with the Enterprise Labs. As a team, we can continue implementing the lessons learnt about business and prototyping for the project and further explore the venture with Climate Launchpad.

I have learnt a lot from reaching out to others and learning from their experiences, so if you would like to have a conversation, please feel free to reach out.