Month: March 2024

Start-up insights: AminoAnalytica

 

Name: Abhi Rajendran

Position: Undergraduate Student in the Department of Materials and co-founder of AminoAnalytica

Abhi has co-founded a new start-up, and AminoAnalytica is participating in this year’s Venture Catalyst Challenge, Imperial College London’s flagship entrepreneurial competition.

Can you tell us more about your company?

One of the main challenges when making drugs is that it takes a long time to test them in a laboratory. A lot of time and cost is spent on screening thousands of proteins in a lab, often to find only one has a chance of making it to a phase-one clinical trial. It can cost over $1000 to physically screen a single compound, making this process incredibly wasteful.

Our new company, AminoAnalytica, is an AI company working in protein-based therapeutics. We aim to develop an AI tool that predicts the physical properties of drugs before they are synthesised in the real world, ensuring that only effective drugs are developed.

Long term, we are aiming to form strategic partnerships with biotech companies where we can combine their in-house data with our proprietary datasets to develop the most accurate virtual screening method for protein-based therapeutics.

What was the inspiration behind starting your company?

I took a deep dive into the world of protein modelling as part of my MEng project with Dr Stefano Angioletti-Uberti. This was a new space for me, but I did have some prior experience in data-driven environments, which was quite applicable. As soon as I started to see promising technical results from my project, I reached out to my housemate Adam Wu who graduated from the Department of Materials last year.

Using his experience in business consulting, we assessed the market and made a few calculations to see if there was potential in the property prediction space. From there, we applied to the Imperial Venture Catalyst Challenge and got accepted onto the 2024 AI x Robotics track.

Starting a business as a student or new graduate can be challenging. Have you had any obstacles and how have you navigated these? 

At this stage in our careers, it has been challenging to grow a significant network in the biotech/pharma space—this makes everything from customer discovery to idea refinement and feedback challenging. Fortunately, the Imperial Enterprise Lab has been incredibly helpful in perfecting our approach to reaching out, and we’ve met some very useful people as a result.

In addition to this, we have become involved in several student-led organisations, such as Nucleate (a biotech community), which has been great for sparking interesting conversations with academics and industry leaders.

Are there any key lessons or skills you’ve learned through the process?

Don’t be afraid to reach out to people, just be honest about what you know and what you are after – most people are out to help you!

Since publishing this post, AminoAnalytica reached the finals of the Venture Catalyst Challenge, Imperial’s flagship entrepreneurial competition, and won the AI and Robotics track. This achievement secured £10,000 in funding. Now, they have been accepted into the Y Combinator program 2024.

PhD Spotlight: Transforming battery technologies

Name: Ramin Jannat

Position: PhD student in the Department of Materials.

Research Group: Professor Mary Ryan

Research Focus: Understanding lithium-ion battery degradation – key to improving technologies like laptops to e-bikes. 

What inspired you to study for a PhD?

I always knew that I wanted to do a PhD because I loved the idea of having a specific research question and dedicating time to answering it (or trying to, at least!). I did my undergraduate degree in Chemical Engineering at UCL, and my master’s project, supervised by Dr Yang Lan, revolved around investigating the colloidal stability of coronavirus-like particles, a highly relevant project during the pandemic.

The only question I had was, ‘Which field do I want to study in?’ This question was quickly answered when I took three modules related to energy sources. I immediately learnt about how crucial renewable sources play in transitioning our world to net zero. The idea of being able to contribute directly to society and have the opportunity to work with some fantastic researchers is definitely a ‘pinch me’ feeling!

Can you tell us more about your research?

My research focuses on understanding major degradation processes in lithium-ion batteries, which are used in laptops, calculators, e-bikes, and children’s toys. A significant challenge these batteries face is the formation of dendrites—tree-like lithium extensions that grow on the electrode surface. Dendrites can bridge the cathode and anode, leading to short circuits or even explosions (Fig. 1). Despite efforts to suppress dendrite growth, we can’t fully stop them without understanding how and why they form.

To address this, my research utilises the new cryogenic facility (cryo-EPS) in the Department of Materials. I use atom probe tomography (APT) and transmission electron microscopy (TEM) to study dendrites at the nanoscale. We can capture real-time snapshots of the battery system by simulating early-stage dendritic growth with an in-situ electrochemical cell and plunge-freezing batteries in liquid nitrogen.

This research aims to improve battery technology, reduce consumer costs for battery replacement, and support legislative efforts to electrify the UK.

What does a typical day involve?

One of the best parts of a PhD is how varied the days are. It’s essentially a four-year project, which means there are many tasks to get on with and these tasks differ depending on the stage of your PhD and personal deadlines.

Recently, I’ve been spending my mornings in the lab synthesising electrode materials (which involves a lot of stirring) or coin cell batteries. Testing the battery performance immediately after assembling them is always slightly stressful as you can expect at least one to fail! My afternoons are generally spent on my desk, analysing data, making presentation slides or reviewing current literature. My days can also consist of teaching undergraduate students (as a Graduate Teaching Assistant) or supervising master’s students.

Can you tell us more about your research group?

My project ties in electrochemistry with complex materials characterisation techniques and because of this, I have several research groups spanning different research themes. I work primarily under Professor Mary Ryan(Fig. 2a), whose large interdisciplinary group covers nanoscale science and interfaces, including energy materials, bio-sensors and corrosion science.

I also work with Professor Baptiste Gault (Fig. 2b), who spends his time between Imperial and Max-Planck-Institut für Eisenforschung in Düsseldorf and whose research group specialises in APT and correlative TEM for various applications.

My other research groups include the Conroy group, led by Dr Shelly Conroy (Fig. 2c), and the Interfacial Electrochemistry group, led by Professor Ifan Stephens (Fig. 2d). The research of the former focuses on APT and TEM (particularly 4D-STEM strain analysis) and is part of the cryo-EPS facility at Imperial, while Stephens’ group focuses on the large-scale electrochemical conversion of renewable energy to fuels, namely via LIBs, catalysis and fuel cells.

What do you enjoy outside of your PhD?

I like to unwind from my PhD by trying out new recipes, whether cooking or baking. As science experiments tend to require careful measurements, cooking is generally more flexible and gives me the chance to be slightly more creative. I also enjoy practising creativity through art, especially hyper-realistic drawings and paintings.

I still enjoy the science realm outside of my PhD, often engaging in outreach events, including school presentations and Student Ambassador days for upcoming engineering students. We also have several group lunches/ dinners per year as part of a research group, including the most recent Christmas lunch with the Conroy group (Fig. 3)!

References:

[1] Babu G, Ajayan PM. Good riddance, dendrites. Nature Energy.