Author: Imperial Materials

Materials Science from home: First year students share more about their lab-in-a-box projects

During Autumn Term 2020, our first-year students in the Department of Materials started using lab-in-a-box projects to support their learning from home. These projects are used as a bridge between in-person teaching, while our students are learning remotely due to the pandemic. Two of our students have shared their experiences using the lab-in-a-box projects and what they’ve learned.

An image of Anjali Devadasan

Anjali Devadasan

The lab in the box was an incredibly exciting aspect of the first few weeks of term. The doorbell rang, I collected the parcel and immediately opened the box to explore the contents inside. The most discussed object on the year group chat (after the vernier callipers of course) was the mini microscope. We shared images of objects under the microscope and guessed what the objects examined were, which ranged from oranges, leaves, paper, and even phone screens.

An image of an apple leaf through the mini-mircoscope
An image of an apple leaf through the mini-microscope

Remote learning has resulted in spending most of our time in front of laptop/computer screens, but the lab in a box has provided us with a change of scenario on many Friday afternoons. The first time I used something from the box was in the Design Study drawing lesson where our task was to sketch a couple of 3D printed parts. Little did we know that the same parts would help us measure density with Arduino in the near future! Arduino sessions began with a short lecture describing the task for the day and for the next three or four hours, I would work through PDF instructions alongside my design study company and the much-appreciated help from our GTA, Harry. We guided each other, laughed at our mistakes, and were confused together and I think the challenges really brought our company together as a team.

Once we gained enough experience with Arduino, we did some lab work in company sub-groups of four. Labs consisted of the various subgroups measuring electrical and thermal conductivity and density using the Arduino setups we had learned. We also did hardness testing for different samples – where we used our mini microscopes! I enjoyed learning the Arduino together as it was fulfilling when we solved the problems with the setup and managed to get it working to receive some real values.

My favourite set up was the very first time we managed to display temperature readings on the little LCD screen. It was exciting when realistic temperatures for room temperature would appear or when they would change if we put different objects near the sensor, such as ice. It will be interesting to use this set up for the upcoming polymer labs.

https://vimeo.com/509725064

 

An image of Amélie Mattheus
An image of Amélie Mattheus

Amélie Mattheus

I thought that the lab in a box project was a very creative idea. Picking up my lab box allowed me to see my peers for the first time. Even though it was socially distanced and completely COVID safe, it was nice to put a face to the names I had been seeing on Teams. When arriving back in my accommodation, I was very excited to open the box, it was like receiving a surprise delivery.

The box contained several recognisable objects which made me feel relieved at first, however, there were objects that I had never seen before. The Arduino lab was something completely new to me. Hence it was very exciting to see my LED light turn on after completing the lab. There were some struggles with the following Arduino labs due to technical constraints like the wires not being soldered hence not being able to get a connection. The meeting allowed me to see examples of other people’s work that did work. It was nice to be in smaller groups as you can talk more freely.

An image of the LED Experiment
An image of the LED Experiment

The GTA was very helpful and helped us through some long labs. He was always prepared to answer our questions when we got stuck. We also had a hardness lab, where they provided us with a spring, materials to test, and a tube. The hardness lab was the lab I enjoyed the most because it was directly related to materials and one of the properties that we had previously learned about. The goal was to indent the material and measure the radius of the indent. We were provided with a microscope that allowed us to measure even the smallest indents on rubber, which tends to go back to its original shape. In addition, due to doing the labs at home, you are able to use the equipment outside of class as well, for example, one of my group mates pointed out that with the microscope you were able to see the pixels on your laptop screen.

An image of pixels taken through the mini-microscope
An image of pixels taken through the mini-microscope

In the end, we were given some extra data due to the constraints of doing it at home. However, the given data allowed us to still analyse the data and use the software available for that. I enjoyed the labs at home, especially because I was still able to discuss and compare my results with those of others. I thought it was a creative alternative that allowed us to still do labs and achieve the skills learned by doing these.  

Student Interviews: We co-authored a paper using research from our UROP

Many Undergraduate students in the Department of Materials will choose to undertake an Undergraduate Research Opportunity Programme. Sometimes the research can lead to co-authorships with the academic group.

This was the case for second-year Undergraduate student Yingxu Li and fourth-year Undergraduate student Seif Mehanna, whose research contributed to a recent paper with Dr Mark Oxborrow, now published in Physical Review Applied. The paper demonstrates how a cheap organic material can be exploited to detect extremely weak radio signals so weak that the signal contains only a small number of radio-frequency photons.

Both students have provided us with a snapshot of the research they did for the paper and their UROP experience.

Seif Mehanna

My part of the research aimed to see if we could get a maser to run using a much cheaper and less bulky light source than a massive medical laser. Lasers tend to be very inefficient at producing yellow light, so we used a luminescent concentrator instead. Luminescent concentrators are devices that concentrate and shift the colour of light, so you end up with a very bright light with the desired wavelength (colour).

I made this very simple setup where we had a luminescent concentrator that Dr Oxborrow had made earlier, surrounded it with two Soviet-made Xe-flash lamps held up with lab clamps, and had a sample at the end of the concentrator that we tried to get to mase. As old as those lamps were, they’re very energy efficient and did a great job! They were so powerful that you could feel when they went off, just like with the flash in a professional studio. Sometimes you don’t need the newest and fanciest equipment to be on the cutting edge of science!

I’m pleased to see the consequences of my research included in this paper, and I hope that it shows that you can have fun and look to the past while doing pioneering research to advance the future.

Yingxu Li

My research contribution to the paper was to render the instrument setup of this newly-developed MASTER, trying to make it look real as in reality. Figures 5(a) and (b) in the publication were produced by the 3-D rendering program, “Blender”.

This UROP was the first-ever research experience in my life, definitely unforgettable! Although the whole programme shifted to online-based, I learned a lot about MASER and 3D graphical modelling using Blender software. Also, the working vibe in Dr Mark Oxborrow’s team was so welcoming, and everyone in the team was happy to help me as “a baby in scientific research”. It gave me an immersive insight into researchers’ lives and a taste of how a publication paper was produced. Last but not least, thank you to Dr Oxborrow for allowing me to contribute to the paper. It made the summer of 2020 so special!

I hope this can show the fantastic opportunities available to students in our department.

Hear more from our students about their UROPs and find out how to apply.

LGBTSTEMDay: Interview with Dr Ben Britton

An image of Dr Ben BrittonTo celebrate LGBT STEM Day 2020, Dr Ben Britton, Reader in Metallurgy and Microscopy – and RAEng Research Fellow, has shared more about LGBT+ STEM Day, his research and how simple acts from everyone can go a long way.

Can you tell us more about yourself and your research?

Hi, I’m Ben and my pronouns are he/him. I’m a Reader in Metallurgy and Microscopy, and I lead a group who try to understand how metals are processed, perform and ultimately fail in high-risk high-value applications, such as nuclear power plants, aeroengines, and the petrochemical industry. We work together to combine experiments and simulations together, collaborating with folks across Imperial, in industry and across the world. I also tweet a bit (@bmatb), teach a bit, and have other interests.

What does LGBTSTEMDay mean to you and why is it important for everyone?

I am not only a material scientist and engineer, I’m also a gay man. Many folks may suggest that my sexuality and gender identity have no relevance for my work. This is incorrect, as numerous surveys and academic papers tell a different story. There is substantive co-correlation of evidence that the relationships we form and who we connect with influence our successes in work and beyond. LGBTSTEMDay provides people who identify as ‘not straight’ and/or ‘not cisgendered’ (i.e. those whose current gender identity matches their gender identity at birth) to celebrate contributions of those people like us, create communities, and create meaningful changes to the practice of science, technology, engineering and maths across the world.

On a more personal level, I also used #LGBTSTEMDay to ‘come out’ more widely in public. As frankly, it is EXHAUSTING to hide this part of your identity and to worry about the implications on your career. So #LGBTSTEMDay has, as I shared in a public talk at the College, entitled me to say: go and read my blog piece – ‘So it’s #LGBTSTEMDay…so what?’

Who are your greatest role models in STEM?

This is always a challenge. Most historical queer figures have had their queer identity written out of the history books. Additionally, one of the privileges for me, as a white man in STEM, is that there are many people like me who have ‘succeeded’ and can be seen in positions of power. This also highlights the imbalance in our midst, especially for those who are at the intersection of minority identities and are doubly marginalised (e.g. people who identify as Black and queer).

There are efforts to correct this, as, for instance, Dr Jess Wade (and many others) have been strengthening the representation of individuals from marginalised groups on Wikipedia, and so we can now more easily identify and empathise with existing role models in our field. There are also professional networks, such as IOM3Pride, LGBTQ+ STEM, Pride in STEM, 500 Queer Scientists and many more where LGBTQ+ people can find people like them, share experiences, and benefit from networking opportunities that they have been (directly and indirectly) excluded from.

How can everyone be an ally and action for change?

I want co-conspirators who are willing to say that the status quo is not good enough, and to agitate for change. There is no reason why we should sustain and support systems that establish marginalisation of individuals based upon their sexual orientation and gender identity, as well as other protected characteristics (and socio-economic class).

There are old and new barriers that actively exclude LGBT+ people and members of other minority groups from participating, and these exist both within the Department, within the College, in the Profession and in wider society. Dismantling these all at once is a daunting task, but simple acts can go a long way, and lots of the work to identify these issues has been done already. So if you want a more refined list of recommendations, you should read the Royal Society of Chemistry, Institute of Physics and Royal Astronomical Society report on Exploring the Workplace Climate for LGBT+ Physical Scientists.