Author: Stefano Sandrone

Dr Stefano Sandrone is a neuroscientist with a special academic interest in neuroimaging, neuroplasticity, history of neurology and of (neuro)science. He was born in Canelli, Italy, in 1988, and he has been studying and doing research in Milan, Zurich and London. In 2014 he was selected as a young scientist at the 64th Lindau Nobel Laureate Meeting in Physiology and Medicine (attended by 37 Nobel Laureates and 600 young scientists worldwide). For this, he has been included in Wired magazine’s list of ‘promising Italians under 35’. In 2015 he co-authored a book entitled Brain Renaissance. It received a one-page review in Nature on its release and won the biennial Award for Outstanding Book in the History of the Neurosciences presented by the International Society for the History of the Neurosciences. In the same year, he also wrote an online commentary for the Neuroanatomy chapter of the 41st edition of the Gray’s Anatomy, thus becoming one of the youngest contributors ever (bona fide the youngest one). In 2016 he was awarded the H. Richard Tyler Award for the History of Neurology presented by the American Academy of Neurology and its Archive Committee. Moreover, he was selected as member of the Young European Leadership Delegation at the European Parliament for the European Youth Event and recognised as Associated Fellow of the Higher Education Academy, the British professional institution promoting excellence in higher education. In 2017 he has been elected as Vice Chair of the History of Neurology Section at the American Academy of Neurology for the 2017-2019 term and recognised as Fellow of the Higher Education Academy. Media coverage (selection): Class (Italy), Discover Magazine Blogs (USA), (Spain), Espresso (Italy), Fanpage (Italy), Focus (Italy), Gehirn und Geist (Germany), (Norway), Gravita’ Zero (Italy), Investigación y Ciencia (Spain), La Stampa (Italy), La Tercera (Chile), Le Scienze (Italy), Motherboard (USA), Neue Zürcher Zeitung Folio (Switzerland), National Public Radio (USA), New Scientist (United Kingdom), Rai Uno (Italy), Rai Due (Italy), Sapere (Italy), Science News (USA), Smithsonian (USA), Spiegel Online (Germany), Wired (Italy).

Interview with Dr Sook-Lei Liew: ‘Doing your best at each opportunity offered often opens up new doors for even more opportunities’

Dr Sook-Lei Liew is an Assistant Professor at the University of Southern California (USC), where she leads the Neural Plasticity and Neurorehabilitation Laboratory and co-directs the USC SensoriMotor Assessment and Rehabilitation Training in Virtual Reality Center. Dr Liew completed her undergraduate studies at Rice University before joining USC for her Master and her PhD. After a postdoctoral fellowship at the NIH and periods spent at the University of Tübingen and at the Johns Hopkins School of Medicine, she returned to California.


Qiyun Wu) Which stage of your career (undergraduate/ master/ PhD/postdoctoral fellow /Assistant Professor) do you find most interesting, and which one is most challenging?

I think the most interesting stage of my career was during my PhD because that was when I really started to learn to ask scientific questions and formulate hypotheses and develop my own body of research. It was a great time where my primary focus was on learning and developing new skills, which I think is always super fun. The most challenging stage of my career has probably been as an Assistant Professor so far, mostly because it is quite a big transition from being a “student/trainee” to finally becoming the “group leader.” Becoming a lab director and an assistant professor is a lot like running a start-up – you have to figure out budgets and finances, hiring and personnel management, physical lab space decisions, and more, while still maintaining (and growing) your science! It has been a very rewarding experience to learn all of these skills, but to date, there aren’t great training programs to really prepare you for all the decisions you have to make once you make the transition.


Emre Yavuz) What has been the biggest challenge you have faced in your career so far? Are there decisions you have made and which you regret now?

The biggest challenge is the first few years of transitioning from postdoc to assistant professor. For most of my career, I was a trainee, and big decisions were made by my mentors. Then, I became an assistant professor, and suddenly I was faced with so many decisions, many of which I was not sure how to make or what the consequences of the decisions would be. Even seemingly small things like what furniture to buy, how many desks, and what color paint on the walls were things that I could not be sure of since I didn’t know how many people would be in my lab, etc. Hiring and managing people was probably the most challenging of all my decisions. While I don’t regret any decisions, I do think that I now approach hiring and management differently than I did when I first started.


Emre Yavuz) How did technology impact your research field? What are the most significant technological advancements that allowed you to excel in your area?

Technology is very critical for my field! The emergence of tons of great free software libraries for big data analyses has made our big data brain imaging work much more feasible. The commercial availability of high-quality virtual reality systems has also made our virtual reality (VR) work feasible. The constant improvements in low-cost sensors have allowed us to make home-based biofeedback a reality. Even just five years ago, the laptop we needed to use with the VR system weighed about 10 pounds and was $3000. Now VR systems don’t even need to be attached to computers, and if so, we can get a high-performance laptop that’s 3 pounds for $1200 or less. It’s very fun to see technology improve over time.


Joanna Vamvakopoulou) What were the biggest challenges you faced while implementing virtual reality and using such technology with patients?

The biggest challenges are just the technical ones of using VR, which has been getting a lot better over time, but initially it sometimes doesn’t run or shuts down or won’t connect. The hardest part of implementing your own software is that there are always bound to be glitches since we are a research lab, versus a whole company dedicated to building VR software. However, I believe we’ve gotten better at this over time, and it will continue to improve as the technology improves!


Sylvana Vilca-Melendez) Your research has a clear clinical relevance: how do you handle the emotional impact of seeing individuals with stroke and, more generally, with neurological disorders?

Interacting with individuals with stroke is the most rewarding part of this work! Admittedly, there is some selection bias since people who participate in our research studies tend to be super friendly and happy to learn and help us with our research. But we are so grateful for them, and it always amazes me how resilient they are. Most of them have come up with all sorts of neat adaptations to be able to do what matters to them again. The emotional impact has been a positive one, and I think most people in my lab would agree that getting to interact with the patients is the best part of the job. We are especially rewarded when we are able to help them get better a bit or give them an experience they really enjoy.


Joanna Vamvakopoulou) What advice would you give your younger self when choosing to follow a career in research and academia?

When I was younger, I mostly liked to read books and play sports! Because of that, I double-majored in English and Sports Medicine in college. However, if I could do it again, I would have majored in Biomedical Engineering (and maybe also Sports Medicine), so I could have learned the technical skills I use now in a more formalized manner. Instead, I had to teach myself (using online resources and a lot of trial and error), but I wish I had gotten these skills earlier on. On the other hand, being an English major was great for my writing, and there is a lot more writing in a scientific academic career than one would think, so I don’t really regret it!


Sylvana Vilca-Melendez) What would be your piece of advice to young scientists who are trying to find the research field they are interested in?

My best advice is to volunteer and be willing to do what needs to be done, even if it is boring at first. I got started by volunteering in a research lab, and the best way to learn is to take on relatively simple tasks at first, like data entry, and then working your way up from there. For instance, in my first few research experiences, I spent many, many hours manually entering data, organizing lab supplies, manually segmenting brain regions and more. But those were extremely valuable learning experiences. Also, while I did that to contribute to the lab, I was able to learn a lot from what everyone else was doing. Over time, after I showed that I could be trusted with simpler tasks, I was given more responsibility.  and allows you to learn the whole research process in an approachable manner.


Maja Wojtynska) Science is becoming an increasingly competitive field. Do you have any advice on any specific skills (computational, soft skills etc.) we could obtain to gain a competitive edge?

For my lab, we prioritize students who have experience with computer programming. We also look favourably on people who have volunteered in research labs already for at least a year or so, because the expectation is that if you’ve been in a lab for a year already, you probably have a decent idea of what you’re getting yourself into! And, if your mentor/advisor that you’ve worked with over time provides a strong letter of recommendation, then that also helps a lot.


Maja Wojtynska) Who is the scientist you admire the most and why?

I have a lot of science heroes! The people I admire the most are probably the ones that I know and have worked with personally because I know they are not only great scientists but also great people. I am very grateful to have had several mentors and colleagues that I’ve had the pleasure of learning from and working with who clearly love the science they do. This is evidenced by their deep knowledge of the topic, their ability to ask probing questions and their excitement when talking about a new scientific idea, and their ability to provide critical feedback that makes my own science better. I am sure everyone knows a few people like this, but they make being a scientist such a pleasure.


Qiyun Qiyun)  How is COVID-19 affecting your working routine? If the changes you have observed are beneficial/convenient, will you continue implementing them?

In my lab, part of our research was data analysis and another part was collecting data with participants. Since the shutdown due to COVID-19, we have only had very limited data collection. Instead, we’ve been focusing more on data analysis, and doing as much as we can remotely (e.g., taking the time to build out a new hardware/software platform for home-based muscle biofeedback for people with stroke). I believe once it is allowed and safe, we will resume in-person research with participants again. However, it’s been great for thinking more deeply about what our exact research questions and hypotheses are in preparation for eventual data collection. We also have been using software for daily communication more, and each day, each member of the lab posts a work goal for the day, as well as something they’ll do to take care of themselves (e.g., a self-care activity, like exercising, reading a good book). That’s been fun to just see everyone’s daily updates and is likely something we’ll keep up for the future. Another nice thing has been the ability to have meetings and conferences with colleagues worldwide since virtual meetings have replaced in-person meetings. While I do miss in-person meetings and interactions, I also hope that we can keep up virtual meetings since they allow us to communicate with colleagues all over with a lot less time spent on travel!

Interview with Professor Charlene Gamaldo: ‘Diversity must come with inclusion and placing a high value in providing a supportive environment for diverse voices to be heard’

Professor Charlene Gamaldo is a Professor of Neurology and Anesthesia Critical Care at Johns Hopkins. She is also the Medical Director of the Johns Hopkins Center for Sleep & Wellness at Howard County General Hospital and the Vice-Chair of the Faculty Development. She completed her BSc studies at the University of Virginia and her medical degree at The George Washington University School of Medicine with an internship at the Greater Baltimore Medical Center. She completed her neurology residency at the University of North Carolina Hospital before joining Johns Hopkins. In 2017, she was nominated for the Board of Directors of the American Academy of Neurology.


Martha Cottam) What are the most significant challenges you have faced as a sleep researcher?

Two primary issues. First, sleep research (when I first started) could be quite expensive and resource-intense as it primarily called for a sleep lab facility and various levels of trained technicians to carry our comprehensive physiologic studies. This makes the ability to even start a career with pilot data more difficult for young investigators unless heavily supported and funded. This also makes the adaptation of these investigative approaches more challenging if you want to be inclusive of a diversity of programs, institutions, communities and even countries with a variable degree of resources. The innovation of ambulatory methods to monitor and study sleep is a welcomed opportunity to close this gap. These various devices, approaches and methods are coming out at a fast and furious pace. Time and due diligence are still required to validate these various methods against gold standard sleep procedures and across various settings and subjects. It will be critical to maintaining the integrity of the discipline, both clinically and investigative. Secondly, the factors that impact sleep physiology include a complex interplay of neuro-bio-psycho-social-cultural factors, which makes it fascinating to study, but also challenging to consider all of these factors in developing a solid research design.


Lucy Bedwell) Do you think habitual poor sleep hygiene practices can be successfully remedied? And what are the challenges of overcoming these to improve sleep quality? 

Sleep hygiene is always a good idea to adopt but rarely serves as the sole answer to addressing sleep quality issues. In fact, in research design protocols testing out Cognitive-Behavioural-Treatment Interventions for Insomnia (CBT-I), now widely viewed as a gold and first-line strategy for treating insomnia, sleep hygiene is accepted as an appropriate placebo arm to test against the intervention approach. CBT-I is an approach that typically includes a varying combination of 7 different behavioural and cognitive approaches to address sleep that are calibrated based on the personal needs and perspectives of the patient. This is where the challenge comes: it really does require a very deliberative, intentional and somewhat long-term commitment to your sleep health analogous to the focus and commitment needed to have sustainable changes with weight loss.


Alice Farquharson) Which other chronic disease your work on HIV and sleep loss may be applicable to?

I was very interested in looking at the relationship between sleep quality amongst individuals living with HIV, namely because of the neurocognitive sequelae that became more notable once we turned the corner with therapies that allowed management of the virus in a manner more tantamount to a chronic condition. Despite evidence of undetectable viral load, individuals living with HIV experienced a greater degree of sleep complaints along with other neurological conditions such as cognitive loss, depression, anxiety, even neuropathy. I was intrigued since many of these conditions had also been associated with poor sleep in the general population and those suffering from other medical and neurological symptoms. For this reason, it was great to adapt my model of characterizing the presence and potential inter-relationship of sleep in other neurological, medical and community cohorts, including Parkinson’s Disease, Opiate Use Disorder, Paediatric Cancer survivors, Marijuana Withdrawal, Underserved Communities.


Nan Fletcher-Lloyd) What is your opinion on the use of meditation to improve restfulness before sleep? 

I love it and think it is a great idea if the patient embraces the technique. I see meditation as in the realm of the relaxation arm that is 1 of the approaches for CBT-I. The key to executing these various approaches and the likelihood of their success is the authentic buy-in of both the provider and patients. If one or both do not embrace the approach, then it is less likely to be effective.


Bethany Goh) What was it that initially drew you to the field of sleep medicine? 

I was drawn to Sleep as a discipline because I really saw it as an indispensable part of preventative and integrative health care. Sleep medicine typifies personalized medicine, where optimal care must involve all factors of the patient as a person. In thinking about sleep medicine, I’m often inspired by the words of Sir William Osler, who said, “The good physician treats the disease; the great physician treats the patient who has the disease.”


Marcelina Wojewska) What do you hope to learn and discover in the field of sleep medicine in the future? 

Sleep can serve as another model for understanding personalized and precision methods of care. Just consider all the factors that influence a person being a good or bad sleeper? I’m inspired by new techniques to further our understanding of the complexity of the relationship to subsequently adopt these approaches with greater precision and accuracy in both diagnosis and management.


Lucy Bedwell) What do you see in the future of sleep research? 

Increasing AI application in the understanding of sleep, whether related to developing diagnostic biomarkers, genomics to assist with precision therapeutics, signal analysis of various physiologic signals like EEG, heart variability, arterial tone at the laboratory level and eventually at the consumer wearable level.


Bethany Goh) Do you have any advice for BIPOC women entering science and medicine?

Innovation and adaptability have clearly been linked with diversity of thought and perspective. To truly realize this benefit, diversity must come with inclusion and placing a high value in providing a supportive environment for diverse voices to be heard. My advice to BIPOC women entering science and medicine is to consider evidence supporting a track record of demonstrable strides towards diversity and inclusion when choosing programs for your training and career. Once there, try to do your best to surround yourself with a mosaic team of peers, advisors and sponsors who embrace this perspective. Hence, you have a fertile environment not only for you to thrive, but for your team and the scientific community as a whole to thrive as well.


Bethany Goh) Have you seen diversity and inclusion in medicine evolve over your career? 

Yes, I have seen greater attention on actionable policies, plans and long-term strategies to address diversity and inclusion in the last year. This also comes with shedding light on the past to understand contextually how historical positions and policies in medicine and in society have had a sustained impact on where we are today. There has certainly been a great deal more magnification on this relationship. The key, however, is the importance of maintaining this focus and keeping up the momentum since the historical factors that got us here did not happen overnight and, as such, the work to achieve a more inclusive environment will not either. It will take sustained resources, time, effort, passion, and emphasis on this being an unwavering priority for everyone in medicine and something we all value as servants of health.

Interview with Professor Ruth Arnon: ‘Pay more attention to the progress women make in their research’

Professor Ruth Arnon is a leading Israeli biochemist and the Paul Ehrlich Professor of Immunology at the Weizmann Institute of Science. She is also the co-chair of the UK-Israel Science Council, a former Secretary-General of the International Union of Immunological Sciences and former President of the European Federation of Immunological Societies. Among her numerous accolades, she won the Robert Koch Prize in Medical Sciences (1979), the Chevalier de l’Ordre de la Légion d’Honneur (1994), the Rothschild Prize in Life Sciences (1998), and she was recognised as the first female President of the Israel Academy of Sciences and Humanities (2010).


Philipp Klocke) Looking back, what would you tell your younger self about the professional choices you made over your career?

I would tell her that she has chosen wisely. Looking back, I have enjoyed the road I have taken. It brought me satisfaction and, until today, I enjoy going to the lab.  It seems I have made the right choice.


Philipp Klocke) What is your approach to promoting scientific research among young people/adolescents?

My approach is to arouse their curiosity so that they will be interested in science.


Phoebe Liddell) How has the research environment changed for women during your career?

Personally, I have never felt any discrimination due to being a woman. However, in general, it’s possible that men were promoted at a faster pace than women. Today, it seems that there is an effort to avoid such discrimination.


Tianze Lin) Could you please comment briefly on Israeli scientific research, such as main strengths, weaknesses, challenges in the future? I am also interested in women’s participation in science (and dedicated strategies to promote that).

In Israel, there is a great effort to promote science and technology. Over 4% of the GDP is devoted to this. Women certainly participate in this effort both in academia and in high-tech and bio-tec companies. Quite a few women play a significant role – as Professors in Universities as CEO’s of companies, etc.


All members) How can we give women more access to high-level positions in research?

Just pay more attention to the progress they make in their research, give them a chance to write scientific papers and present at national and international conferences.


Nicole Kocurova) What do you think was the most groundbreaking scientific finding you contributed to during your research career?

The most groundbreaking scientific finding was producing a synthetic polymer that inhibits the animal model for multiple sclerosis, which led to the development of Copaxone.


Nicole Kocurova) How does the research environment compare in different countries and institutions that you were/are affiliated with?

Nowadays, in Europe, the USA, Canada and Australia, the environment is excellent. I am not familiar with the situation in other countries.


Phoebe Liddell) What do you think could improve international collaboration in science research?

More exchange programmes for students and young scientists at the beginning of their career would be helpful. Also, grants that support collaboration between scientists from different countries will promote teamwork.


Federico Licini) What are the advantages and disadvantages of working in academia compared to working in the pharmaceutical industry?

In academia, you have more freedom to follow your curiosity. In industry, you probably have a higher salary and have a chance to develop practical products, whether medical or industrial.


Federico Licini) How do you effectively balance your time to be part of multiple advisory boards for relevant scientific institutes while also conducting your research?

I manage.


Ruby Lathey) As a leading scientist who has roles in multiple fields of research and positions in both academia and industry, what are your opinions on communication between various sectors of science and how this can be improved?

I am an enthusiastic supporter of communication. It can be achieved by holding joint conferences and by the industry providing grants and support to scientists in academia and, thus, attract them to be interested in projects that are of mutual interests.


Nicole) Where do you think research is heading in your research field?

I hope that a universal flu vaccine will be developed in the not too far future.


Philipp Klocke) Do you think the BioNTech mRNA vaccine for future MS therapeutics is a potential success story?

I am not sure. It has as yet not been approached.


All members) Having worked on the influenza vaccine, what are your views on the current Covid-19 vaccination situation?

Developing an effective vaccine for COVID-19 in a record time of less than six months is an unbelievable achievement. Hopefully, it will help the world overcome the pandemic.


Picture credit: Weizmann Institute of Science

Interview with Dr Martina Di Simplicio: ‘Build resilience mechanisms and a support team’

Dr Martina Di Simplicio is a Clinical Senior Lecturer in Psychiatry working at the Centre for Psychiatry, Imperial College London. She investigates the cognitive and neural bases of mental imagery-focused emotion regulation treatment in bipolar disorder and self-harm. Before joining the UK, she trained in medicine and psychiatry at the University of Siena, Italy. She completed her PhD at the University of Oxford, where she trained in cognitive behavioural therapy at the Oxford Cognitive Therapy Centre, and specialised on mental imagery-based techniques. She then worked as a Career Development Fellow at the MRC Cognition and Brain Sciences Unit and as a Research Associate at Jesus College in Cambridge.


Nan Fletcher-Lloyd) In terms of women in science, do you have anyone you would consider being an inspiration to you? Who are they and why?

Since I was a teenager, my hero was Professor Rita Levi-Montalcini, the Italian neuroscientist and Nobel Laureate. I guess she was the only woman scientist with an international profile that we would know of at that time. Moreover, her personal history as a young Jewish girl left on me this impression of dedication, resilience and stamina that makes anything feels achievable if you have a real passion for studying. I also loved that she was old, full of wrinkles and beautiful; a different kind of woman to what you would see every day on a magazine. I recommend the comic book with her story if you don’t know her. I once happened to be in a hotel in Siena, my hometown, where she stayed. I saw her from a distance, but I was too shy to approach her. I still regret that.


Nan Fletcher-Lloyd) During your career, what would you consider to be your most important achievement, and why?

Do you want the job interview answer or the real-life answer? Jokes aside, so far it has been developing a new intervention that targets self-harm in young people. We are at the early stages of treatment development, so there’s a lot of work to do, from testing efficacy to unpacking mechanisms etc., but our initial data are promising. Importantly, every time I present it to a clinical team or young people, the feedback I receive is that it could fill a gap in clinical need, which is the motivation to keep working on it.


Nan Fletcher-Lloyd) What do you find to be the most interesting aspect(s) about your field of work?

I am drawn to cognitive neuroscience because the gap between performance on a cognitive task and translation into clinical psychiatry is *relatively* small. Thus, my research can simultaneously observe phenomenology (i.e., try to get into the subjective perspective of what patients are experiencing) and dissect it into cognitive dimensions. As a field, we claim that if we get it right, by training or manipulating certain cognitive functions (e.g., attention to specific stimuli or working memory), we can revert the psychopathology, but we still have to prove it. This is a great challenge to work towards.


Melendez, Sylvana) Could you elaborate more on your work about future episodic stimulation and the clinical benefits of this research?

Episodic future simulation happens in your mind (and body) when you imagine a specific detailed future scenario. Think of one specific activity or event that you’ve missed out on due to Covid-19, and then visualise in your mind as vividly as you can how the first time will be when you will be able to meet that friend again, travel to that particular place, see a relative who is shielding. While you imagine this, you may catch yourself smiling, getting teary or feel your heart racing. This kind of future mental imagery can become dysfunctional, for instance, if someone can’t stop vividly imagining terrible future scenarios, which generate high anxiety. Similarly, one can train the adaptive use of future simulation to enhance motivation towards rewarding activities. For example, to help overcome anhedonia (a core symptom of depression), or to engage in helpful behaviours as an alternative to self-harm. In my lab, we are testing which specific components of cognitive processes can be modified by future simulation and what makes future simulation work therapeutically to improve mood or behaviour. For example, is it about the duration, about how much you repeat it, about the ability to engage somatic areas of the brain and elicit change in the sympathetic/parasympathetic system? I am also interested in translating this into digital tools so that people could use an app to practice future mental imagery.


Philipp Klocke) A career in science naturally involves setbacks and failures – what keeps you motivated and on track?

Probably that I remain really passionate and interested in my area of research, whenever I have to start writing or re-writing a grant application, the process of setting hypotheses and designing experiments is fun and makes me overcome the fatigue or disappointment from previous failures. The other important aspect is a good peer network of colleagues with whom you can bounce off ideas and get open, direct and merciless, but constructive, feedback. That kind of contact is more difficult over Zoom or Teams, and it is probably what I am starting to miss due to the pandemic.


Alessia Marrocu) Working in the field of mental health and psychiatry, have you found it to be led predominantly by men or women? Stereotypically, it seems that the mental health field attracts more women, and I wondered if you have experienced this to be true or otherwise.

You are right. There are more women undergraduate psychology students, mental health nurses and, probably, the same goes for psychiatry trainees, because, compared to other medical specialities, it has the reputation of a better work-life balance. However, you have to look at the top of the pyramid: as in other sciences, professors in psychology and psychiatry remain predominantly white men. The good news is that things are changing – our Division of Psychiatry led by Prof Anne Lingford-Hughes is definitely a good example. The critical point is looking at how many women get into a postdoc or their first independent research position compared to their male colleagues.


Lucy Bedwell) In addition to experiencing sexism in academia, women are commonly perceived to experience increased ageism in comparison to male colleagues. Have you observed any differences in the way younger and older female colleagues are treated and have navigated the world of academia?

Sadly, yes. It’s unspoken, often subtle and non-verbal behaviour, but, to some people, you will always be “a young girl” …probably until you are a professor nearing retirement, and they may not even be aware they are doing this. I think it’s a broader cultural aspect that means that women are still raised to be “nice girls” and it becomes an ingrained mechanism that shifts not just men’s but women’s own behaviour. I definitely catch myself reverting to that position when I am in meetings with more senior people, predominantly men. I quite like being informal (which might be associated with young age), but since I noticed that all my male consultant colleagues wear a suit, I always wear a blazer in the clinic or whenever I have an important meeting. The flip side of the coin is that women who are very assertive and direct can be more easily labelled as “angry”, particularly if they are from a BAME background. I am hopeful though that, as we talk more and more openly about this, things will continue improving for your generation. I am also curious about whether academia more equally led by women will become less hierarchical.


Melendez, Sylvana) Which advice would you give to women in sciences who are just starting their career?

First, build resilience mechanisms and a support team… your own “fan club” of other women (and men too) that is a safe space to lick your wounds after another grant rejection and who will boost your confidence ahead of an interview. And not just academics: my most useful interview preparation was a mock with two friends who work in industry. This will help you “market” yourself a bit better while remaining true to your values, as women are still known to be (as a general rule with its own limitations) more self-critical than men.

Second, make sure you say “No, Thank you” as much as yes, as not all offers are opportunities, but can be distractors, and other colleagues can take on that additional responsibility too.

Third, if you are striving for an ambitious career, make sure your partner is ready to have an equal share of domestic and childcare responsibilities.

Interview with Professor Huda Zoghbi: ‘We will never be successful and safe as a society unless we attend to all issues and all people’

The Brain Prize is one of the most important awards in neuroscience. Awarded by the Lundbeck Foundation, it is worth approximately 1,3 million €. Professor Huda Y. Zoghbi and Prof. Sir Adrian Bird were awarded the 2020 Brain Prize for their ‘groundbreaking work to map and understand epigenetic regulation of the brain and for identifying the gene that causes Rett syndrome’, as stated by the Brain Prize motivation. Professor Huda Y. Zoghbi is an Investigator at the Howard Hughes Medical Institute, a Professor at the Baylor College of Medicine and the Director of the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital. Among her numerous accolades, she has also won the Gruber Prize in Neuroscience in 2011, the Dickson Prize and the Pearl Meister Greengard Prize in 2013, the Shaw Prize in Life Science and Medicine in 2016, the Canada Gairdner International Award and the Breakthrough Prize in Life Sciences in 2017.


Elton Yeung) How does it feel to be awarded the Brain Prize? How will this impact your future plans?

It was a big surprise and it felt surreal as I had no idea this prize is given to scientists outside Europe or to molecular mechanisms of disease. As the news sank in, I started reflecting about the meaning of the prize and I realized it is a tribute to my patients and trainees, the ones that inspired me and the ones that trusted me. This prize will help us push forward on some challenging fronts to bring new ways to help treat people with Rett.


Rebecca Womersley) Learning about the scientific journey that led to your discoveries was incredibly inspiring. What would you say was your biggest inspiration through your research on Rett syndrome?

 Hands down the biggest inspiration came from people affected by Rett syndrome. Watching them struggle with all that this disease brings on and live with it, day after day and year after year, is what inspired and continues to inspire me to try harder to come up with solutions.


Kitty Murphy) Winning the Brain Prize is a great motivator and inspiration for women in STEM. What are the key moments that have led to this success?

First and foremost, encountering my first and then my second patient with Rett syndrome. Once I saw them, I could not take them out of my mind and wanted to help. Other key moments include meeting Ruthie Amir, who trusted me and was willing to work on Rett. Then there were the long days, months, and years of patience and perseverance as we systematically went through genes on the X chromosome, till we found the culprit—that was a most exciting moment.


Elton Yeung) Back to the days when you started raising awareness and advocating for the Rett’s syndrome (or other works), what was the most challenging step/setback and what was your strategy for tackling them?

Some of the challenges stemmed from the fact that I was young, just getting trained in molecular genetics, and hence it was very hard to have a voice that anyone would pay attention to. The other big challenge is the fact that the disease is sporadic and people had a hard time believing a sporadic disease could be genetically determined. Of course, today, we know this is very common. The only way I was able to overcome these challenges is by ignoring them and doing the work.


Rebecca Womersley) What would you say was the most challenging time in your career so far? How did you overcome these challenges?

The first was leaving my Alma mater, the American University of Beirut during the Lebanese civil war and being stuck in the USA and unable to return. I was fortunate to be accepted at Meharry Medical College, where I was able to finish medical school. The second challenging time was encountering children with neurological problems during my residency and feeling helpless in that I did not know the causes of their diseases and could not help in a meaningful way. This, of course, led to the third challenge which is switching from being a well-trained clinician to one who wants to do basic research but without a relevant experience—the transition was not easy and was truly humbling.


Kitty Murphy) What do you think was the greatest challenge female scientists faced when you began your career? How has this changed with time? 

To me, the greatest challenge as a female scientist was that I did not have around me role models of other female scientists who were successfully running a lab and trying to raise two babies. I did not know if I am making the right decision working, if my kids will be OK, how to balance things, and so on. I created my own world and dedicated my time to family and work. This was the best decision. Today women with and without children are key in the research workforce and are excellent role models for younger women. I share my stories with new working mothers so that they feel no guilt, as for years I lived with worry and guilt, until I discovered my kids turned out great. I thank my awesome husband, who was/is my main source of support and a wonderful dad.


Rebecca Womersley) Have you seen a positive change in the representation of female scientists in neurogenetics over your research career? Do you have advice for young women starting their research career in neurogenomics? 

Absolutely. I am embarrassed to say I was the lone female in that field when I started, but today there are so many wonderful, accomplished female scientists, in genetics, neuroscience, and neurogenetics. It is the most wonderful and exciting field as it uses genetics to solve some of the hardest disorders afflicting humanity.


Elton Yeung) What would be your advice for people trying to advocate for underrepresented and underfunded issues?

Please do not give up. This is so important. We will never be successful and safe as a society unless we attend to all issues and all people. This is an issue I am passionate about, as well. It is so important, thank you for dedicating your efforts to it.


Elton Yeung) How do you balance between personal life, research and medicine? Additionally, what would be your advice physician-scientist to-be?

To me, balance is living life doing what you think is important and dedicating the time to do it right. I am very organized and try to plan. When kids were little I was extremely disciplined about maximizing my work and productivity when in the lab (no breaks and no wasting of time), so I can go home and spend quality time with them, eat together, and put them to bed. I often had to go back to work after they slept, but at least I was with them when they needed me. I also made time for my husband, and we always did something special one weekend night. That said, there was no room for anything else in my life, exercise and other activities, came about much later… I was all about family and work until the kids went to college. Then I had more time to add exercise into my daily routine, and including travel in my working routine. As for a physician-scientist career, it is a most rewarding career, but please be prepared to dedicate 80% of your time to research and 20% to clinical work. This balance is critical.


Kitty Murphy) If you were to start your career over again in the present day, what areas of research would excite you as a career path? 

If I were starting today, I would do a double major in biology and math, and then specialize in tackling the genetics of mental illness. Psychiatry today is where neurology was a couple of decades ago, and we need to do so much work to solve these diseases that represent the largest burden on people, families, and society. I would hope a background in math would help invoke smart ways to tackle the complicated genetics of these disorders.


Rebecca Womersley) Which direction would you like to give to your research in the next ten years? 

I am hoping we can bring effective therapies to people with Rett syndrome and MECP2 duplications and come up with smart interventions that can prevent adult neurodegenerative diseases, like Alzheimer and Parkinson from ever developing.


Photography credit: Mr. Paul V. Kuntz

Interview with Professor Carla Shatz: ‘When I received the PhD in Neurobiology from Harvard Medical School in 1976, I was the first woman to do so’

Professor Carla J. Shatz is the first woman who received a PhD in Neurobiology from Harvard and the first woman who become Head of the Department of Neurobiology in the same university. She made breakthrough discoveries about the cellular and molecular basis of early cerebral development. Past President of the Society for Neuroscience, she is Fellow of the Royal Society, an elected member of the American Academy of Arts and Sciences, and of the National Academy of Sciences. Her long list of achievements includes also the Gerard Prize, the Gruber Prize, the Champalimaud Foundation Vision Award and the Kavli Prize in Neuroscience. Last, but certainly not list, here you can find the names of some among the neuroscientists she mentored during her career.


Alina Bondarenko) After completing your undergraduate studies, were you determined to pursue a career in neuroscience or were you considering other directions as well? Which options did you have at that time?

My undergraduate degree was in Chemistry. By my junior year of university, I realized that, although I loved Chemistry, it would not engage me over a lifetime. This realization propelled me directly into the newly born field of neuroscience. In 1968, on the advice of my undergraduate chemistry tutor Frank Westheimer, I reached out to two young faculty members of the newly formed (1966) Department of Neurobiology at Harvard Medical School: David Hubel and Torsten Wiesel. I spent my senior undergraduate year with them in tutorial and lab experience and was enraptured forever by studies of visual system function and development. Upon graduating (Harvard 1969; there was only one other woman chemistry major in my class), I was awarded a Marshall Scholarship to study for 2 years at University College, London. This wonderful honor happened because, unbeknown to me, the Dean of Students nominated me. It was quite unexpected since very few women were selected as Marshall Scholars (and women were not eligible for Rhodes Scholarships in those days). I received an M.Phil. in Physiology in 1971. The experience at UCL was formative and crucially educational- as a chemistry major at Harvard, I had never taken a single course in biology or physiology and so had a lot of catching up to do.

Living in London was exciting and wonderful, but I was anxious to return to the US. The question, though, was: how should I continue my career training? Should I apply to medical school or to graduate school? At the time women were admitted to Medical School, though in small numbers. Two of my uncles were clinical neurologists and both urged me to go to medical school. But several years earlier, Sonia- my paternal grandmother- had a devastating stroke. Not enough was known about the brain and even these two caring physicians could do nothing for Sonia except put her in a wheelchair and consign her to a nursing home. So, my decision was made: Go to graduate school, conduct research and make discoveries that might someday be relevant to help Grandma. When I made this decision, both of my uncles told me that I had made a “fatal career error” by deciding to do a Ph.D. rather than an M.D. When I received the Ph.D. in Neurobiology from Harvard Medical School in 1976, I was the first woman to do so. I felt welcomed and appreciated by Hubel and Wiesel, though at the time I expect that they and the Department were conducting their own “experiment” to see if a woman could succeed. Happily, the experiment proved successful. And eventually one of those neurologist uncles actually took me out to lunch and applauded my decision!


Kofoworola Agunbiade) You are the first woman who received a PhD in neurobiology from Harvard. Could you please give us one example of a situation where you had to be more vocal and assertive than your male colleagues?

As a Ph.D. student, I’m not sure that I ever had to be MORE vocal or assertive than my male colleagues. The environment in the Department of Neurobiology was remarkably supportive. However, please understand that I have always had a forceful personality and I think this trait has been both a strength and a weakness. As a child, my family engaged in many lively intellectual discussions and “arguments” around the dinner table and this family experience prepared me well as a Ph.D. student to hold my own in a scientific discussion (though it was definitely arduous dinner experiences for boyfriends and husband). Perhaps this early training even prepared me too well: Women are not necessarily rewarded or respected for being assertive. A challenge throughout my career has been to achieve a delicate balance on the tightrope between being overly assertive, as opposed to too compliant, since in both cases you end up being ignored. For example, I am not alone in having the experience of gently making a comment at a meeting that is promptly ignored, just to hear the exact same comment being applauded as a great idea when made again by a male colleague a few minutes later. This still happens to me, though these days I don’t hesitate to point it out.


Kofoworola Agunbiade) What was it like to work with Nobel Laureates David Hubel and Torsten Wiesel? How did they ‘shape’ you as a scientist?

The discoveries of Hubel and Wiesel of the columnar organization of circuits in primary visual cortex of animals with binocular vision, which resulted in the Nobel Prize in Physiology or Medicine in 1981, revealed brain circuits of almost crystalline- like perfection. Every day as a Ph.D. student I watched the beauty of visual system organization unfold before my eyes. I thought, “all research must be like this”, with major discoveries rolling off the press constantly! Of course, when I started my own lab, I realized that was not true, but from David and Torsten I learned the joy of research, the importance of articulating and presenting results clearly, and the thrill of going scientifically where few have ventured before. I can’t emphasize this point about venturing into the unknown enough- they described their own experiments as a voyage of discovery. If you view your research as an adventure, you don’t tire easily when difficulties are encountered because difficulties are part and parcel of any good adventure. Hubel and Wiesel were real people- we also played tennis together, ate dinner in lab together when experiments were running over night, went on ski trips and so on. From them I learned that the lab is also a home and your colleagues are your scientific family. Hubel and Wiesel have both been wonderful mentors and scientific parents ever since. But note that I did not have any “Womentors”, since at that time all faculty members in the Neurobiology Department at Harvard Medical School were men.


Alina Bondarenko) Have you ever felt that you, or your work, was treated differently because you were a woman, particularly at the early stages of your career?

I still feel that way. For a while, I thought that this feeling would disappear with success and age, but experience has proven otherwise. Being resilient is really helpful. Having good friends with whom to share your feelings and frustrations is crucial.


Alina Bondarenko) Which ‘leadership’ advice would you give to someone who feels like an outsider?

When I was a student, women were outsiders. Now, happily there is a good representation of women in neuroscience Ph.D. Programs, but not among the professoriate. Women are still forging paths to achieve balance between family and work. And so are men. This is an important time socially, when many men have partners who also have very high- powered jobs and so the challenge of creating a life that can encompass both work and family persists. Being “outside” is not only about gender and diversity. It can also be about being on the periphery of your own research field because you are forging a new scientific path or direction. My advice (which I try to take but not always successfully) is to have compassion and persistence. With compassion comes new ideas for creating a supportive environment based on your own experience. From this work, change can come but only with persistence.


Nadhrah Izmi) You are also the first woman to become Head of the Neurobiology Department at Harvard: what are the achievements you are most proud of?

I am most proud of the achievements of the junior faculty who were hired during my ChairWomanship (2000-2007). All of them are now very successful and all have received tenure: Lisa Goodrich, Bernardo Sabatini, Rachel Wilson, Chenghua Gu. Prior to my time as Chair, the basic science departments at Harvard Medical School had not granted tenure to junior faculty, who were generally expected to move on. This situation created both a gender gap and also an age gap between junior and senior faculty because the same great men who were there when I was a Ph.D. student were still on the faculty 25+ years later. The newly hired young scientists created a fresh environment of excitement and scientific novelty, and also most wonderfully all also managed to start families! They themselves achieved this success; I only helped by providing adequate resources and trying to create a positive and supportive environment in which they were expected succeed.


Faissal Sharif) It seems like students around the world are being taught with your explanation of the Hebbian theory ‘Cells that fire together, wire together’. What was the origin of that phrase? Did you expect that it would catch on?

It amuses me that the phrase is frequently attributed to Donald Hebb. In fact, I coined that phrase and used it often in lectures and seminars beginning in about 1989-1990, when my lab discovered the existence of spontaneously generated waves of activity in the developing retina (Meister et al, Science 1991; Shatz, Scientific American 1992). The phrase helps to explain how spontaneous neural activity during visual system development can drive synapse remodeling, resulting in highly ordered connections between eye and brain in which nearest neighbor relationships are preserved. The 2 key requirements for ‘Cells that fire together, wire together’ are 1) that groups of closely neighboring retinal ganglion cells (RGCs: the output neurons of the eye) are synchronously active, and 2) that there are Hebbian-based synaptic mechanisms similar to LTP (for strengthening) or LTD (for weakening out of synch inputs) at developing retinogeniculate synapses. It took us a number of additional years to prove that these endogenous patterns of retinal waves are relayed by the RGCs to their target LGN neurons in thalamus and drive Hebbian mechanisms of synaptic plasticity.

I’ve always been interested in the “nature vs nurture” question: That is, the question of how much connectivity is hard wired versus how much is tuned up by sensory experience driven by neural activity. When I set up my own lab at Stanford as an Assistant Professor, it occurred to me that by studying the development of connections between the retinal ganglion cells and their target LGN neurons it might be possible to address this question. The connections from eye to LGN are a developmental biologist’s dream because they are relatively accessible and highly stereotyped: In adult, retinal ganglion cells from each eye form connections with LGN neurons in separate but adjacent eye-specific layers. Prior to work from my lab, it had been generally assumed that the LGN layers had to be hard wired because they form prior to birth, well before the rods and cones function and before visual experience.

In the visual system of binocular mammals, this eye-specific segregation of RGCs is not present at the beginning of development. We showed that the eye-specific layers emerge as RGC axons remodel by pruning away sets of inappropriately located synapses and by growing and strengthening correctly located ones. We also found that these early synapses are functional and that the pruning process, which occurs long before vision, requires neural activity. Blocking action potential activity prevented eye-specific segregation. This observation surprised many at first but provided important evidence against the argument that connections are entirely hard-wired. On the other hand, blocking action potential activity did not alter the targeting of RGC axons to the LGN or the initial formation of the retinotopic map, both of which we know now are dependent on hard-wired molecular guidance cues, underscoring the dynamic interplay between “nature and nurture”.

The biggest surprise of all came when our lab discovered that the type of neural activity needed for LGN layer formation is generated spontaneously by the RGCs in the form of highly correlated “waves” of firing that sweep across the retina. This discovery was completely unexpected and happened at Stanford during a wonderful collaboration between Rachel Wong, at the time a postdoc in my lab and now a Professor at University of Washington, and Markus Meister, a postdoc in Denis Baylor’s lab and now a professor at Cal Tech. We used what was then a novel method of multielectrode recording to monitor simultaneously the neural activity of well over 50 retinal ganglion cells and found, incredibly, that even in the dark and prior to vision, neighboring RGCs in the eye fire action potentials synchronously. Subsequently, my lab showed that this synchronous activity is relayed to LGN neurons. These discoveries in the late 1980’s and 1990’s made me think about how Hebb synapses might function in developing systems, and I coined the phrase, “cells that fire together wire together” to help explain and teach the concept to students and audiences.


Nadhrah Izmi) Looking backwards, what advice would you give to your 20-something-year-old self?  

I would have told myself to check my fertility status! When I left home at age 16 to go to college, I had no idea what I might become. If you had asked me then to predict my future, I would have said that the one certainty is that I would be married with children. It is incredible to me that my life has turned out so differently. Back then, there were no role models to lead the way. I married, but waited until my scientific career was fully established and I had received tenure before embarking on creating a family, only to learn that it was too late to have children. I was an “experiment” in early in vitro fertilization techniques, which were unsuccessful despite many attempts. Nowadays there are so many options – and my advice to my 20-something year old self is to have a fertility evaluation and take appropriate steps. Though I don’t have biological offspring, there is still a silver lining. Over the years, I have been truly privileged to have incredible students and postdocs in the lab; these are my scientific children, and now even grandchildren (google Carla J. Shatz Family Tree – Neurotree). Without them, none of the discoveries would have happened. These extraordinary people- many now colleagues and friends- are not only talented and creative, but they have also had the courage to join me on the scientific journey, which has often ventured into unknown and controversial territory. There is no adequate way to express my gratitude to them.

Interview with Professor Fiona Watt: ‘It is much better to try and fail than never to try at all’

Professor Fiona Watt is a leading British scientist in the field of Regenerative Medicine and the Executive chair of the MRC. She obtained her Bachelor of Arts and her Master’s Degree from the University of Cambridge and her PhD from the University of Oxford. After a two-year postdoc at the MIT, she came back to the UK to open her own lab at the Kennedy Institute of Rheumatology. Then, she moved to the Cancer Research UK, London Research Institute, and taught at the University of Cambridge, where she was also Deputy Director of the Wellcome Trust Centre for Stem Cell Research and of Cancer Research UK, Cambridge Research Institute. She then joined King’s College London, where she is currently directing the Centre for Stem Cells & Regenerative Medicine. Fellow of the Royal Society (since 2003), she has been the first woman president of the International Society of Stem Cell Research (2008).


Rebecca Womersley) What piece of advice would you have liked to receive at the beginning of your scientific career? 

That the people you meet early in your career are likely to pop up again for the rest of it.


Rebecca Womersley) Who are your role models, both within and outside of science, which have helped you ‘shaping’ your career? 

I would like to pay tribute to Brigid Hogan – she has not only been a great scientific role model but also a true friend and ally.


Elton Yeung) In 2008 you became the first woman President of the International Society of Stem Cell Research (ISSCR): have you ever experienced any significant challenges or setbacks in that role? 

No – the stem cell field has always attracted talented female researchers.


Matthew Brace) In 2018 you were appointed as the Executive Chair of the MRC: what attracted you to this role and what are your key goals for the coming years? 

The MRC is over 100 years old and yet its mission has remained constant – to improve human health through world-class research. Who wouldn’t want to lead such a wonderful organisation? I am very keen to support individual clinical and non-clinical scientists, to foster collaboration and translation, and to ensure that no-one is denied access to the infrastructure required to pursue their research.


Elton Yeung) Which specific traits of yours contributed to your success as a successful leader? 

Growing up, I only ever wanted to be a scientist. I’m adventurous and I tend to say ‘yes’ rather than ‘no’. And which skills and attributes are crucial for a successful leadership? I believe that it is important to listen to others, to have clarity of vision and to be compassionate.


Elton Yeung) How holding remarkable leadership roles have changed you as a human being? 

I have some sleepless nights and quite a few enemies.


Matthew Brace) How do you divide your time between the MRC and the Centre for Stem Cells and Regenerative Medicine at King’s College London, which you lead? 

I’m on secondment at the MRC for 80% of my time. That means I have one day a week at King’s and can hold weekly group meetings as well as catching up with everyone in my lab. I’m lucky that it only takes 25 minutes to walk between my office at the MRC and my lab. I can therefore fit lab time round MRC meetings and I don’t have to stick rigidly to one particular day of the week for King’s.


Matthew Brace) Stem cell research has advanced significantly over the past 20 years. What do you hope will be better understood in the next 20 years? 

I really hope that cell and gene therapies will continue to progress into clinical applications.


Rebecca Womersley) Many people assume there is a clearly defined boundary between arts and sciences: do you think so? Which role does creativity play in your work? 

I think scientists have much more in common – intellectually – with artists than with doctors, who are really craftsmen and women. Scientists need to have the time and space to be creative.


Elton Yeung) What would be your advice for women scientists who are about to start their journey in science? 

Go for it – it is much better to try and fail than never to try at all.


Matthew Brace) What is the most important advice you would give to a new PI on how to lead a lab?

Treat your team members with respect.


Rebecca Womersley) Looking backwards, which moment(s) are you particularly fond of and attached to? 

Over the years I have often taken my children to conferences. I will never forget my eldest telling me, after a conference reception, that I was ‘just a nerd magnet’.

Interview with Professor Anne Lingford-Hughes: Neuroscience, Psychiatry and Passion

Professor Anne Lingford-Hughes is the Head, Centre for Psychiatry and Professor of Addiction Biology at Imperial College London. She is also a Consultant Psychiatrist with a particular interest in pharmacological treatments of alcohol problems and other substance addictions at Central North West London NHS Foundation Trust. Her research has focused on using neuroimaging and neuropharmacological challenges to characterize the neurobiology of addiction

The key aims of this new blog are to enhance the curriculum and innovate pedagogy, highlight the contribution of women in academia within and outside the College, and engage and inspire the society. The founder and editor of the blog is Dr Stefano Sandrone, Teaching Fellow within the Faculty of Medicine, and the contributors are Imperial’s MSc Translational Neuroscience students.

Swetha Umashankar) What inspired you to choose scientific research as a career? 

At school I liked all science subjects but particularly biology and chemistry. I also liked doing projects since you were allowed to do subjects in more depth. Projects also helped to satisfy my curiosity about things that I could not find the answer to!  There are no scientists in my family so my teachers at school and my tutor at University were very important in helping me develop my career.

Lucía Luengo Gutierrez) What were the difficulties you have to deal with when you decided to start a science career? 

I do not really remember any particular difficulties. It was helpful being able to move within the UK and to the USA for my post-doc since I had no particular ties to one place. I saw for some colleagues that it was much harder to take up opportunities since they had family and financial responsibilities.

Swetha Umashankar) How would you describe your career trajectory so far?

Hard one! I think most people think they can always do better or differently? You can always find people you regarded as contemporaries at the start of your career who have done better or worse than you. On the whole I am happy with where I am and what I want to do next.

Caroline Schaufelberger) Was there a specific event or reason that aimed your interests in research towards addiction?

The lab I joined for my post-doc was studying the GABA-A receptor. Amongst a range of modulators that we studied, it was known that some of the effects of alcohol were mediated through this receptor. When I returned to research after completing my clinical training I joined a group whose primary focus was on schizophrenia. At that time evidence had been growing for a potential role for the GABA-A receptor in schizophrenia. Having failed to get a fellowship to support an imaging study of the GABA-A receptor in schizophrenia, I reapplied to study alcoholism – and got funded. At that time very few people were looking at the biology of alcoholism using brain imaging so it was quite novel.

Claudia Ghezzou) Throughout you career, what have been the motivations and incentives that have kept you focused in your impact as a researcher regardless of the possible difficulty of the processes or discouraging results from the research carried out?

Being in the clinic where there is obvious unmet need continues to motivate me to keep going – particular as addicts are a vulnerable, stigmatised and often marginalised within society.  Being a member of a good team who can celebrate and commiserate is crucial. Support and understanding from my family has also been crucial.

Pavlina Pavlidi) Did you experience any conflicts between your career and personal life choices?

All the time! It is a constant juggling act particularly as for the last 10yrs I have lived away from my family during the week so I try to limit activities which impact on time with them at weekends. Modern technology has been helpful – so even if I am not at the dinner table with them in person, I can join via skype. On the other side, they have had some amazing experiences when they have joined me on a ‘work trip’ so they have benefited as well.

Shinil Raina) What gaps do you think exist between neurobiological and clinical research in the field of addiction?

Gaps still exist though having to argue that there is a neurobiology to addiction is less of an issue now compared with 20yrs ago. Compared with other areas of psychiatry we know quite a bit about the brain in addiction and many of the medications used came from knowledge about pharmacology and neurobiology. I think many people are aware of this however most people who work in the addiction field have no training in this area. This then means that the number of clinical researchers in this area is limited – this needs to change if we are to improve prevention and treatment. So to me the gap is about lack of people trained in research and who work clinically rather than highlighting a gap in a particular area.

Caroline Schaufelberger) To what extent do you think that the research you are doing in addiction will have an impact on the societal understanding of addiction?

I hope that by people understanding the role of the brain that addiction is destigmatised, that it is no longer seen as due to someone ‘lacking moral fibre’.

Ryan Dowsell) What’s the most ridiculous scientific report you’ve seen in the media?

Another hard question! No one report comes to mind but I do find it intriguing how the media can report that ‘alcohol is bad for you’ and ‘alcohol is good for you’ without any sense that they are being inconsistent or informing the reader how to interpret research.

Shinil Raina) Why do you think in the current political climate are some politicians against the advancements in science?

I am not sure it is just current – it has always been this way. I am not sure they are against scientific advances as such but more about how much they will cost financially and whether it will be popular with voters. As one elected official was quoted as saying when asked about cuts to budget for addiction services – no ‘man on the street’ in the run up to an election has ever asked me to give more money to addicts. Another factor is that in the UK (I do not know about elsewhere) very few politicians are scientists and also they like yes/no – whereas we speak in terms of probability.

Jessica Hain) Are there any areas in addiction research which you would like to see explored in the future?

I think we need more in the area of opiate addiction where we have not really seen a step-change in what we can offer for decades – we need new treatments to help those struggling with street heroin and also those whose use of opioid analgesics have escalated uncontrollably.

Leire Melgosa) What is your advice to young scientist (i.e. a hard truth or something we tend to worry about but we should not)?

Jessica Hain) Do you have any advice for neuroscience students?

Same answer to both – if you are interested in a topic or technique, join a group working in this area and use it like an apprenticeship. I think it is also important to have people around you that you enjoy working with to mentor and help you to keep going towards your goal. Neuroscience is a great area to be in and there is always something new and exciting happening.

Interview with Professor Helga Nowotny: ‘In basic or fundamental research one does not know what one will find, yet it is precisely this uncertainty that is attractive’


Professor Helga Nowotny is Former President of the ERC, the European Research Council and one of its Founding Members. She is Professor emerita of Science and Technology Studies, ETH Zurich and Nanyang Technological University Visiting Professor (source:

The key aims of this new blog are to enhance the curriculum and innovate pedagogy, highlight the contribution of women in academia within and outside the College, and engage and inspire the society. The founder and editor of the blog is Dr Stefano Sandrone, Teaching Fellow within the Faculty of Medicine, and the contributors are Imperial’s MSc Translational Neuroscience students.

Kausar Raheel) You hold different positions throughout your career. What is the most rewarding aspect of your job? What drives you?

Being able to follow what I like to do: to be curious about the world, people, ideas…and passionate in exploring how we might improve the human condition.

Kausar Raheel) How did you come to be passionate about what you do?

How does one become what one is? A mixture of luck with what nature, parents and our early social environment has endowed us with and what we were able to make of it. I feel very humble about what I have been able to achieve and privileged in being able to do what I strongly care about.

Kausar Raheel) What do you wish to see more from female scientists?

More self-confidence and persistence. Don’t let anyone discourage you – women can make it!

Kausar Raheel and Esther Awodipe) What are your aspirations and advices for young female scientists?

My answer is very simple and always the same: chose your partner well! Why? To embark on a scientific career and, even more important, to sustain it, you will need the full support of your partner. As probably neither you nor your partner has already experience in juggling the precarious life-work (im)balance that awaits you in science, you might want to involve a mentor to discuss with both of you what this entails for you. Don’t fall into illusions – life is sufficiently hard, but life in science is also immensely rewarding.

Esther Awodipe) Have you experienced any challenges working in STEM as a woman? If so, how did you overcome these challenges?

My first challenge came when I applied for my first job with a professor who knew my work well. He frankly declared that he prefers a man for the position – in those days this could still be stated openly! I asked him why and he had rational arguments: sooner or later I would get married, have kids and his investment into my training would be lost as I might leave the job or be less committed. In the end, we agreed: if he finds a man whose overall qualifications are better than mine, the job should go to him. Well, I got the job! But this is not the end of the story. After two years I got married and left with my husband to New York where I started a new career. The cunning of reason was on my side after all.

Esther Awodipe) Who is your biggest inspiration and why?

Although there are many people who do great things, I had to find my own way.

Esther Awodipe) How do you motivate yourself and stay motivated?

Motivation was never a problem for me. As I said before, I feel privileged that I can do what I like to do. But I had also had to work hard to get there.

Esther Awodipe) How do you manage your work-life balance?

Taking a break when it feels necessary, getting enough sleep, keeping fit, laughing…

Ines Das Neves) Based on your experience in several areas, but particularly through your work in the European Research Council, what, to you, are the major problems with the way peer review processes are currently conducted or set up to work? Do you think there is room for much change within the frameworks for research funding and policy that are presently in place?

We worked hard at the European Research Council to set up a peer review culture unlike any other. Not that we changed the procedure, but we made huge efforts to find the best scientific minds to serve in our evaluation panels, people who were broad in their scientific knowledge and open-minded, having good judgement and looking for scientific excellence only. But nobody is exempt from unconscious bias. We carefully monitored what we observed, giving feed-back to panel members and showing them examples of where unconscious bias might have occurred.

The general problem is that the peer-review system is under immense pressure. It is bursting at the seams. Funding agencies then resort to formal mechanisms, i.e. indicators of various kinds and quantitative measures. While this alleviates stress to the system, it that can never fully replace a carefully calibrated peer-review system with good human judgment.

The solution is to differentiate much better: which funding streams can rely on light reviewing, perhaps with very simple indicators? Which funding streams need a (perhaps quantitative) preselection, followed by careful interviews with the pre-selected candidates? When should reviewers read the publications of the candidates and when is it sufficient to look only at the publication list? Various other solutions are being discussed right now, but the most important is not to rely on ‚One size fits all’.

Ines Das Neves) Why do you believe that embracing uncertainty is important to scientific research and the way its findings are presented to the general public?

As I wrote in „The Cunning of Uncertainty“ science and scientists thrive on the cusp of uncertainty. In basic or fundamental research one does not know what one will find, yet it is precisely this uncertainty that is attractive, pushing scientists into the yet unknown. Speaking to the public, one has to have the courage to admit that absolute certainty does not exist and that we all have to learn to live with probabilities. We have to communicate better that scientific knowledge is always preliminary in the sense that it will be replaced by more and better knowledge. We also have to say loud and clearly that scientific findings hold under certain conditions that can be spelled out. There is no simple and unconditional ‚yes’ or ‚no’ to many of the questions that preoccupy the public. But we can and should explain better how science works and how scientific findings are arrived at. It can be done!

Ines Das Neves) You have recently written the book, An Orderly Mess. What drove you to write about this particular subject?

This little book consists of two essays. ‚Revisisting Eigenzeit’ is based on an Inaugural lecture I was invited to give for a big research project at the Haus der Kulturen in Berlin. It is an analysis of what has changed in our experience of time since I first published my book on Time (the German title was ‚Eigenzeit’) some thirty years ago. The Central European University Press (yes, from the embattled Central European University in Budapest that is under threat of being closed) wanted to translate and publish it. They asked me to write a second essay and I thought that the topic of ‚messiness’ cuts across societal concerns and can be found in science as well. In a sense, it follows the cross-cutting  theme of uncertainty. Messiness alerts us to the dynamics of order and disorder and our involvement in generating both, but also how to deal with it.

Carolina Beppi) The educational system can be considered a ‘positive constraint’ to our creativity, providing us with the scientific knowledge and tools that spur our creative ideas. One the other hand, the educational system represents a ‘negative constraint’, limiting our research to a corrupted ‘school of thinking’, where the scientific discovery and advancement is limited by the demand and interests of the capitalist economy and market. What ‘revolutionary action’ should we enact, in your opinion, as socially aware scientists?

I don’t think that ‚revolutionary action’ is anywhere on the horizon these days. We speak about ‚responsible research and innovation’, of more sharing, better cooperation and open science. The point is that greater awareness is needed about the many complex interrelationships between science and society in a global and globalising world. To become more aware of our interdependencies, but also of our ability to act. We are neither the pawns of history, nor its masters. But we often do have greater freedom to act than we may think. I would like to see more young scientists to become what I call ‚competent rebels’.

Carolina Beppi) Currently successful industries are now applying machine learning classification and prediction techniques on consumer data to guide their market strategies and maximise their outcomes. Only those industries that are successfully integrating these softwares will survive in the economy. At that point, economical power will only become a matter of ‘who owns the biggest data’. To what extent do you agree with this statement?

This is too deterministic for me. All big technological paradigm changes have produced monopolies. They have to be broken up and regulated by the state. This is the point where we are now with Google, Amazon, Facebook and the like. I admit that it is more complicated now as the state has partly been overtaken by markets and we have to factor in the global world. But I am convinced that regulation of the ‚big data’ world will happen.

Carolina Beppi) Algorithms that extent predictions at aggregate level, the increasing accumulation of big data, but also developments in risk management, cannot protect against ‘the unpredictable’ – and the 2008 financial crisis is an exemplification. Do you believe the development and integration of AI intelligence will soon lead to another worldwide economical and social risks in the context of both employment and security?

The risks are there, undoubtedly.

Carolina Beppi) Rita Levi-Montalcini was one of the greatest scientific minds of the 20th century. She believed ‘Women have always had to fight doubly. They always had to carry two weights, the private and the social. Women are the vertebral column of society’. What is your idea in this regards?

Rita Levi-Montalcini was right, but we have to challenge men more and better to share the burden. With humanity stumbling into an uncertain and artificial future in which humans and non-human artefacts will mix and mingle in unforeseen ways, new forms of living together will evolve. Perhaps much of the aggressive misogynic behaviour that we see today is the last rear-guard fight of a patriarchy that will no longer have a place in the future. Let us remember: whatever life forms will evolve depends also on us. My hope is that they will be more inclusive and based on mutual respect.

Interview with Professor Jackie de Belleroche: ‘Just be yourself, follow your dream’

Professor Jackie de Belleroche leads the Imperial College London research group that has a strong commitment to investigate on Amyotrophic Lateral sclerosis (ALS) through molecular genetics, expression profiling in spinal cord and through the use of experimental models to develop new therapeutic approaches.

The key aims of this new blog are to enhance the curriculum and innovate pedagogy, highlight the contribution of women in academia within and outside the College, and engage and inspire the society. The founder and editor of the blog is Dr Stefano Sandrone, Teaching Fellow within the Faculty of Medicine, and the contributors are Imperial’s MSc Translational Neuroscience students.

Leire Melgosa) What made you choose science and the area of research you work in?

I was always deeply fascinated by Molecular Biology from DNA to medical research.

Caroline Schaufelberger) What were the main considerations you made when taking your career forward in research rather than in a clinical environment?

I was lucky that my early research was always relevant to neurological disorders such as epilepsy and stroke. This background helped me to gain a lectureship, a joint appointment in Biochemistry and Neurology, which provided the perfect environment to pursue research in clinical Neuroscience.

Leire Melgosa) What have been the most challenging part of your career and the most satisfying one so far?

In common with many others, the most challenging stage was finding an established position that would enable me to develop as an independent researcher. For me, this came with the award of a Mental Health Foundation Fellowship. Research is full of surprises, but each new discovery, however small, is very satisfying. However, even more than this, is to see the success of members of my research group in setting up their own research teams and establishing themselves in their various chosen careers.

Ryan Dowsell) How realistic is it to think that gene mutations play a much more significant role in motor neurone disease (ALS) than we currently believe?

Understanding how gene mutations cause disease in families has had a phenomenal effect on our ability to define the processes that underpin disease processes and also occur in sporadic cases, and are therefore targets for therapeutic intervention. This is, of course, only part of the story, as ALS is an adult-onset disorder and effects of ageing play an important role and an increasing number of DNA variants are being discovered that modify gene function and act as risk factors. Overall, multiple factors will undoubtedly contribute to the final evolution of disease, e.g. age at onset and duration of disease.

Claudia Ghezzou) Throughout you career, what have been the motivations and incentives that have kept you focused in your impact as a researcher regardless of the possible difficulty of the processes or discouraging results from the research carried out? 

I have always been committed to finding out the basis of disease both in neurodegenerative and psychiatric disorders. This is never ending, whatever the setbacks, the challenge is always there to find a way forward. Discouraging results may even provide a greater depth of understanding and lead to a more fruitful approach.

Shinil Raina) How has your experience as a woman in science changed since when you started as an undergrad?

Jessica Hain) Did you encounter any difficulties in your pursuit to be a female scientist, and do you think attitudes have changed over the years? If so, to what extent?

Of course attitudes have changed monumentally which is a major achievement, but there is still room for improvement. As a scientist, I did not think of myself as being different, being female. Travelling to international conferences, where female representation amongst the speakers is low, just makes you realise how much has been achieved.

Caroline Schaufelberger) What do you think are the main challenges for women in science and what has your experience taught you that would aid the next generation tackle these challenges?

Danielle Kurtin) How do you balance work as well as motherhood?

These are of course relevant to all walks of life. The framing of your question is absolutely correct to address the issue of balancing work and motherhood. Once you return from maternity leave you need to find a balance, allocate your time as much as possible equally to your work and your family. There are many options available for childcare and universities like Imperial have many facilities available and provide other types of support, which all help to make life easier at what would otherwise be a challenging time. My daughters have greatly benefitted from attending the crèche and nursery which are highly recommended but many other options are available.

Ryan Dowsell) How has working at Imperial College London helped to shape your career as a woman in science?

Imperial is a very dynamic and supportive place to work, whether male or female.

Caroline Schaufelberger) Especially in our MSc cohort there is a higher percentage of women compared to men, what do you see is the importance of more women entering a career in science?

Ryan Dowsell) Throughout my undergraduate and postgraduate studies, I’ve noticed how the classes have always included more female than male students. So from your experience, what do you think is causing a gender disparity between the roots of STEM and the managerial positions?

Across UK Universities as a whole, there are similar gender differences in particular subjects, more females in biological subjects, more males in engineering. Medicine and chemistry are more evenly balanced. The disparity may be based historically on traditional attitudes, but there have been some marked changes in some subjects, such as Medicine, to reach an equality between males and females compared to a few decades ago. I am encouraged to see more women embarking on careers in sciences, where there will be increasing opportunities available.

Jessica Hain) Do you have any advice for neuroscience students?

If you have a passion for a subject, you should pursue it.

Leire Melgosa) Do you have specific advices for young female scientists (i.e. a hard truth or something we tend to worry about but we should not)?

Just be yourself, follow your dream. There are always difficult times, whether male or female, but there is always a way through.


Photography credit: Jackie King