Category: Systems and infrastructure

How big a setback is the Nord Stream gas leak for climate change goals?

The news that the Nord Stream gas pipelines have stopped leaking is a relief to all of us involved in curbing emissions from methane, but the consequences of such a massive gas leak are still of huge concern. In her latest blog, the Sustainable Gas Institute’s Dr Jasmin Cooper examines how big an effect the alleged sabotage of the pipelines might have on climate change goals.

The Nord Stream 1 and 2 pipelines are two large subsea pipelines which connect Russia to Germany. The pipelines are the primary source of Russian gas exports to Germany.  Until the Russian invasion of the Ukraine in February they transported up to 55 billion cubic meters of gas per year, accounting for most of Germany’s gas imports. On September 26th 2022 two small tremors were detected by the Geological Survey of Denmark. Whilst there was no active flow through the pipelines by this point, they were still full of gas. The tremors are believed to have been caused by deliberate explosions – alleged sabotage that has resulted in four major methane leaks.

The leaks have caused concerns around the security of energy infrastructure as well as the security of energy supplies globally. After the announcement of the first leak in the Nord Stream 2 pipeline, gas prices across Europe jumped – having been falling since a previous peak in August. The leaks also raised energy security concerns in Europe as the continent heads into winter. However, Germany secured two floating liquefied natural gas (LNG) terminals in August of this year and in mid-September was in talks with Qatar and the United Arab Emirates to secure LNG deliveries. In August of this year, the mainland EU member states agreed to a plan to cut gas use by 15%3, so the damage caused to the Nord Stream pipelines may not impact gas supply so much as the rise in gas prices.

While there is still a lot of uncertainty around the leak; including the cause, the extent of the damage to the pipeline and how much natural gas has leaked out – this incident has the potential to be one of the biggest climate disasters so far in the 21st century. Subsea pipeline leaks are unusual so there are no past examples to directly compare to.

Deep Water Horizon was a drilling rig in the Gulf of Mexico which exploded in April 2010 resulting in huge damage to the marine environment from oil. The Nord Stream leaks are natural gas, so the environmental impacts will be to climate change and global warming rather than a direct impact on the marine environment and wildlife. Our only comparable large gas leaks are the Aliso Canyon gas leak, which is estimated to have emitted 97,100 tonnes4 of methane between October 23rd 2015 and February 18th 2016 and the Raspadskya coal mine leak, which was found to be emitting nearly 90 tonnes of methane per hour5 earlier this year  – and could emit 764,000 tonnes of methane by the end of 2022. .

The Nord Stream pipelines while not actively transporting gas, did contain 778 million cubic meters of natural gas. This would be 360,000 to 460,000 tonnes of methane, which in CO2 equivalence is 11 million to 14 million tonnes of CO2eqb. In the context of total global methane emissions, between 2008 to 2017 total global emissions were 576 Tg CH4 per year (1 Tg = 1,000,000 tonnes), with 80 Tg CH4 per year from the oil and gas sector. So, the amount of gas stored is equal to less than 0.1% of total global methane emissions, or 0.5-0.6% of annual oil and gas methane emissions. While this may seem like a small percentage, they are similar to the methane emissions of Denmark, Ghana or Yemen in 2021. That volume of gas has an economic value – based on prices on 05 October 2022 – of €1.4 billion and is approximately 5 days’ worth of supply to Germany based on Nord Stream transport when it was operational.  So from a climate, social and economic perspective, this is a catastrophic loss.

How much of the methane stored in the two pipelines will be emitted is yet to be determined. From the amount of gas stored and the images of the leak, it is evident the leak will be a big blow to ambitions to meet climate change targets. The Global Methane Pledge – launched in November 2021 – has seen over 120 countries pledge to cut their methane emissions by 30% (relative to 2020 levels) by 2030. Since then, many have launched new regulations on how their methane emissions can be slashed. The Nord Stream leaks will likely negate much of the progress made so far.

assuming natural gas is 70 to 90% methane and methane density of 0.7 kg per cubic meter
assuming GWP100 of 30 TFF
assuming gas price €174.76 per MWh; 36 PJ per 1 bcm of natural gas

Why shale gas is not the right answer for the UK’s short-term energy needs

"Hydraulic Fracking" by phxlaw1 is licensed under CC BY-NC-ND 2.0.
Hydraulic fracturing in Colorado

On September 22nd the UK Government announced the official lifting of the moratorium on fracking for shale gas. This was a ban put in place in 2019 after much opposition from community groups and environmentalists, as well as a report by the Oil and Gas Authority.

The Sustainable Gas Institute’s Dr Jasmin Cooper began her research career investigating shale gas and shares her expert perspective on why this policy U-turn could be a red-herring for the UKs energy strategy.

Shale gas is natural gas that is produced from shale formations. It has the same composition and chemical properties as the natural gas we’re all familiar with, but the key difference is in the rock the gas is extracted from. In conventional gas reserves, like those in the North Sea and Qatar, natural gas is extracted from a porous rock such as sandstone. Being porous, there are channels the gas can travel through which makes extraction relatively straightforward. Shale is not porous, so the natural gas is held in pockets which are not connected. Therefore, to make the gas extractable, fractures must be artificially created to connect the pockets and provide a pathway for extraction. The process, called hydraulic fracturing, has become more commonly known as ‘fracking’.

Hydraulic fracturing is when a mixture of water, sand and chemicals (including antibacterial agents and chemicals which make the solution more viscous) is injected into rock under high pressure.  Large quantities of the solution are needed along with energy to inject it at the pressures required.

The 2019 Conservative Party manifesto pledged the moratorium would not be lifted unless hydraulic fracturing could be proven to be safe scientifically – in regard to earthquakes caused by hydraulic fracturing. But since then, there has been little scientific evidence to prove it is. The British Geological Survey (BGS) published a report on September 22nd 2022 which found that more work is needed to understand the risk of earthquakes, as well as how to manage those risks.

Hydraulic fracturing has been carried out on a large scale in the USA, where it led to a significant increase in natural gas production and is credited with transforming their gas market.

Understandably, the transformation in energy security and the jobs a shale gas industry could create are put forward as the main arguments for developing it in the UK. The energy crisis in Europe as a result of the Russia-Ukraine conflict  – with gas prices climbing to a record high as mainland Europe shifts away from its dependence on Russian gas – is another driver of the Government’s decision to lift the ban- with the intention of boosting domestic production and lessening the rise in energy costs.

But the UK is quite different to the USA, in the geology, extent of our reserves and onshore infrastructure to manage any gas extracted. As of September 2022 there are no commercially operating shale gas wells in the UK, and just two exploration wells, both owned and operated by Cuadrilla.

It takes time to determine whether a shale gas well will produce marketable quantities of gas, and many tests are needed.  Surveying the geology of the site, studying core samples for the presence of gas, as well as hydraulic fracturing tests so see how much gas can be liberated – these all take time.

Given the minimal shale gas activity in the UK since 2010  – when the first UK shale gas exploration well was drilled – it is highly unlikely the industry could grow in size and scale at the rate required to have the desired impact on energy supply and security.  It’s also questionable whether shale gas could have an impact on energy prices. The UK’s oil and gas industry is largely in the North Sea. Unlike the USA there is little onshore supply chain infrastructure. Significant investment into new infrastructure to process shale gas to pump it into the UK’s gas grid will be needed. These, in addition to the costs of drilling and hydraulic fracturing could make shale gas far less cost competitive than the Government are suggesting.

Overall, it is unlikely the lifting of the moratorium will have an impact the UK’s energy security and prices. The small scale and limited activity of the industry mean there is a long way to go before the industry could reach commercial scale productivity. The strong social and environmental opposition would likely also slow down any progress in developing a shale gas industry. All in all, shale gas is not going to be an answer to the UK’s energy crisis and other avenues would be better to explore.