Month: October 2015

BLOG: Building a cleaner natural gas supply chain

GasTech-560pxX300px-Twitter-LargeThe last few days in October saw the Gastech conference and exhibition carried out at the massive Singapore Expo. It was a large affair, with all the major gas companies discussing the most pressing issues for them, particularly emerging gas markets and the prospective rise of Liquefied Natural Gas (LNG). Helge Lund, the CEO of BG group, gave a keynote speech to kick off the conference. He gave his view on the challenges of incorporating gas in a lower carbon world: both a carbon price and a commitment from the industry to reduce methane and carbon dioxide emissions are vital.

It is indeed a challenge to incorporate a fossil fuel into a lower carbon world.  Natural gas is likely to play a crucial role on two fronts: reducing the dependency on the more carbon-intensive coal; and providing variable and peak electricity supply as a compliment to intermittent renewables. If we are going to carry on using gas for these services in the short and medium term, the environmental impacts must be minimised.

Our recent white paper at Sustainable Gas Institute published in September, assessed what we know about both methane and carbon dioxide emissions from the natural gas supply chain. The study found emissions to be highly variable, with some significant ‘hotspots’. Capture

In particular, very high methane emissions were found for liquids unloading processes, gas-driven pneumatic devices and compressors. For all of these sources, emissions were very variable and there are technologies and techniques that can minimise or even eliminate emissions. For example, gas-driven pneumatics could be replaced with instrument air drivers, compressors must be inspected regularly and dry-seals are much lower emitters than wet-seals for centrifugal compressors. The economic feasibility of these changes is likely to be variable but in many cases positive: i.e. a lower product loss more than pays for the increased capital or operating cost.

Another finding of the white paper on supply chain emissions was the appearance of ‘super emitters’ all across the supply chain.

Recent studies have found evidence of a small number of facilities or equipment that emit far more than the average, which significant skews the emissions distribution. These super emitters are likely to be due to the faulty or incorrect operation of equipment or ineffective inspection and maintenance procedures. Detecting the super emitters is the key challenge here, but once we do so, average emissions from the supply chain would be reduced significantly.

Paul Balcombe videoIn summary, no technological innovation is needed to reduce supply chain emissions significantly, only commitment to action from the gas industry. It is very promising to hear words of such commitment from world leading gas producers at Gastech and now is the time to act on this.

If you are interested in finding out more, please download the report, or a short summary note  or watch our short video.

To register for our monthly newsletter, email SGI@imperial.ac.uk or follow us on twitter @SGI_london.

BLOG: Reducing the costs for Carbon Capture and Storage

12235378406_e25379dc47_o copyThis event blog was written by Sara Budinis, a research associate at the Sustainable Gas Institute (SGI). 

Last Thursday, I attended a thought-provoking event which covered the role for research and development (R&D) in delivering cost-competitive Carbon Capture and Storage (CCS) projects in the UK in the 2020s.

This particular topic was of special interest to me as the SGI’s second White Paper (due to be published in the Spring of 2016) will review and discuss the costs of CCS when applied to power generation and industrial applications.

The workshop was arranged by KTN Knowledge Transfer Network together with the APGTF, CCSA, Coal Research Forum and UKCCSRC.

It explored the challenges associated with second and third generation CCS projects and how R&D could help to solve these challenges, reduce costs and support the development of a sustainable supply chain.

The cost of CCS is one of the main challenges to its development in the UK and worldwide. There is a variety of metrics to express CCS costs. The most common ones include the cost of carbon (£/CO2, which can be avoided, captured or abated carbon) and cost of electricity (£/MWh), which is used when you are dealing with CCS applied to power generation.

When delivering new technology, its cost decreases along a “learning curve”.  So, a First Of A Kind (FOAK) plant obviously involves a high economic risk. Exploring ways to reduce the capital and operating costs of CCS from the FOAK level to the NOAK (nth of a kind) level is of great interest for industry, government and academia.


 

Below are some highlights from the day:-

  • Luke Warren, from CCSA, highlighted the lack of an enabling policy framework as one of the main challenges to the development of CCS in the UK, which must move toward a low carbon economy. He commented on the need for a long term sensible energy policy. Because of the strong interest of the UK Government towards the consumers, CCS and carbon reduction in general must be cost effective and represent a good “value for money” as an investment for the future.
  • Jeremy Carey from UKCCSRC talked about the role of academics in the development of Carbon Capture and Storage and pointed at the importance of basic research at every stage. Moreover he believes that current technology rather the new technology must be involved in order to achieve concrete outcomes. This is because of the little time window between the present and 2020.
  • Andrew Green from Energy Technologies Institute: CCS is less expensive than other option for the reduction of CO2 emissions and moreover can be combined with biomass technologies in order to have negative carbon emissions. CCS must be applied to the power sector as well as to the industrial sector. He highlighted some key actions including the implementation of both Peterhead and Whiterose CCS projects, and the need for early investment in storage appraisal and further investments by 2020.

If you want to hear more updates from SGI or receive a copy of our next White Paper, sign up to our new bimonthly newsletter by emailing us at: SGI@imperial.ac.uk.

BLOG: Tackling methane’s contribution to climate change

A blog by Dr Paul Balcombe from the IPIECA-OGCI Workshop.

On Monday 12th October, I presented at a workshop in Paris which was focussed on understanding methane emissions from the natural gas supply chain. ItOGCI IPIECA was a conference organised by IPIECA and OGCI, who are both voluntary initiatives set up by major oil and gas producers to share knowledge on emissions reductions.

It was great to get a chance to present the work of the Sustainable Gas Institute on methane and carbon dioxide emissions from the supply chain to all these new faces: about 30 new perspectives from industry, as well as some from government, academia and NGOs.

The aim of the conference was really to pool together all of our knowledge on what we currently know about methane emissions from the natural gas industry. The idea is that we can identify the most important gaps in our knowledge that we need to fill and to discuss how we can start to do this.

Key headlines

One of the highlights of the conference was a talk by Prof Myles allenmylesAllen from the Environmental Change Institute at the University of Oxford. He delved into detail about the complicated issue of how potent methane is compared to carbon dioxide in terms of climate change. Methane is much more potent in the short term but doesn’t last as long in the atmosphere, so has a much lower lasting effect than CO2. Prof Allen says that, because of this, we need to make sure that we focus on both methane and CO2: if we don’t reduce CO2, we will never stabilise our greenhouse gas emissions; but if we don’t reduce methane, we will have a much larger global temperature when we do reach the peak.

Steve-Hamburg_D4B8294_287x377Another eye-opener was from a talk by Steve Hamburg, who heads up the work done by the Environmental Defense Fund on direct methane measurement all across the US. It was great to hear him talk so passionately about the massive task of emissions measurement and reduction. One of the take home messages Steve made was that reducing methane emissions is extremely important because this reduces the speed that we are warming the climate (whereas reducing CO2 reduces the overall temperature).

The key challenges that we summarised from the end of the first day were:

  • We need to increase methane emissions data collection. We have seen a big rise in data collection in the US which is great, but we need this to continue to other regions and more downstream emissions measurement.
  • It is clear that emissions are highly variable and it is vital that data represents the high distribution of emissions.
  • It is also vital that data is validated independently. Much work is going on by the industry to measure and in future publish emissions data, but Capturethe data must be validated so that transparency is maximised.
  • There is real potential to reduce emissions further and the technology is there. The key is to do this in as low cost as possible and to ensure that appropriate mechanisms are in place to detect super emitters quickly.

If you are interested in finding out more about the subject, read our recent paper (or a short summary) on the challenge of methane and CO2 emissions in the natural gas supply chain.