Category: Greenhouse gas emissions

Investigating the state of low-carbon transport policies at COP22

Last week, Arnaud Koehl, a PhD researcher at the Department of Primary Care and Public Health at Imperial College, attended the United Nations Conference of the Parties COP22 climate conference in Marrakech. Arnaud is investigating the kind of sustainable transport policies that could co-benefit health and the economy while addressing climate change.


The importance of transport in combating climate change

The transport sector represents about 14% of worldwide greenhouse gases emissions (Intergovernmental Panel on Climate Change IPCC, 2010). More worryingly, the International Energy Agency (IEA) projects a huge growth in private motorised modes of transport; according to these estimates, there will be around 2 billion cars on the roads by 2040! It is therefore paramount that we find low-carbon pathways that will meet the increasing demand for mobility.

So how will these transport emissions (addressed by the Paris Agreement) be enforced by 2020? The way the Agreement is framed relies on the good will of each nation or signatory: countries put forward policies to reduce greenhouse gases emissions for each economic sector (e.g. industry, agriculture, housing) themselves. The legal name for these voluntary targets is “Intended Nationally Determined Contribution” (INDC). This architecture provides the flexibility needed to address climate policies according to the local context. This strategy proved to be quite successful as three out of four of all countries mention transport in their INDCs.

Cycle-sharing demonstration scheme in front of COP22

Lessons from COP22: Chinese engagement, policy trends and international cooperation

In the spirit of the Paris Agreement, COP22 proposes a “strong vision, light touch”. I was particularly interested in what this meant for China. The National Development and Reform Commission (NDRC), an important governmental body, just released a report titled “China’s policies and actions for addressing climate change – 2016” .

This report mentions that fuel efficiency improved by 15.9% (2005) for private cars and ships and by 13.5% (2016) for the civil aviation sector. A director at the NDRC, whom I interviewed, stressed that this was the result of an emphasis on “green, circular, low-carbon” policies imposed on the private sector within the 12th (2011 -2015) and 13th  (2016-2020) five-year plans of the Chinese government. He was also clear on the fact that these policies are being tested and implemented through thousands of projects around China.

In terms of transport modes, I found a clear consensus on acknowledging the benefits of implementing bus-1678945_640Bus Rapid Transit systems across populated urban areas. These are dedicated lanes, typically in the center of the road. The increased use of trains and trams were also leading to a consensus between representatives from differing nations, such as Ethiopia and the United States. Smarter forms of using private motorised modes, such as carpooling, car-sharing, on-demand taxis were also seen as potential ways of reducing emissions.


Beyond its final results, COP22 was also the opportunity to seal partnerships to spread good practices internationally. Initiatives from official actors and civil society are soaring in an attempt to implement green policies on time. A good example is Mobilise Your City, gathering 100 cities around the world supporting local governments in developing countries to plan and foster sustainable low-carbon urban mobility. A core belief that Mobilise Your City is promoting among its members is that improving mobility is only relevant if there is a net well-being effect.

How research at the Sustainable Gas Institute can help

muse-2At the start of the year, I was working on the transport module of a new energy systems model developed by researchers at Sustainable Gas Institute (SGI), Imperial College London. The model is called MUSE (Modular Universal energy system Simulation Environment). The aim is that industry will be able to use the model for technology and R&D roadmapping, while it will help international governments make future plans for climate change mitigation.

Uses of the MUSE Model

MUSE could help answer key COP22 issues. Many participants at COP-22 stressed the lack of research on freight transport, despite the fact that it represents half of overall transport emissions. By taking into account freight-related transportation, MUSE enables us how to assess how policy-makers could avoid unwanted developments, such as a spread of high polluting cars, by looking at the incidence of the price of new technologies based on factors such as economic growth.

Another major opportunity would be to look at the improvement in fuel efficiency of current technologies, such as diesel, petrol and hybrid. Indeed, the share of electric vehicles in the world’s fleet will soar, but fossil fuel powered vehicles will remain an important part of the equation until 2050.

electric-car-558344_640Finally, the MUSE model allows to test such interventions at the national level, which is a relevant scale as powerful policy-makers are often found in capitals. Sanjay Sath, from The Energy and Resources Institute, and Jose Viegas, from the International Transportation Forum expressed the necessity of adopting a dual approach, by implementing national policies at the local level. In that perspective, many highlighted the critical need to get more indicators measuring the progress of environmental policies on the ground to ensure of actual improvement of well-being. An example of such indicators is the proximity of public transport to social housing.

MUSE could make the most of the currently available data in order to give an insight on the future place of transport in urban dynamics, and thus help calculating these indicators further.

You can find out more about MUSE here.

BLOG: Building a cleaner natural gas supply chain

GasTech-560pxX300px-Twitter-LargeThe last few days in October saw the Gastech conference and exhibition carried out at the massive Singapore Expo. It was a large affair, with all the major gas companies discussing the most pressing issues for them, particularly emerging gas markets and the prospective rise of Liquefied Natural Gas (LNG). Helge Lund, the CEO of BG group, gave a keynote speech to kick off the conference. He gave his view on the challenges of incorporating gas in a lower carbon world: both a carbon price and a commitment from the industry to reduce methane and carbon dioxide emissions are vital.

It is indeed a challenge to incorporate a fossil fuel into a lower carbon world.  Natural gas is likely to play a crucial role on two fronts: reducing the dependency on the more carbon-intensive coal; and providing variable and peak electricity supply as a compliment to intermittent renewables. If we are going to carry on using gas for these services in the short and medium term, the environmental impacts must be minimised.

Our recent white paper at Sustainable Gas Institute published in September, assessed what we know about both methane and carbon dioxide emissions from the natural gas supply chain. The study found emissions to be highly variable, with some significant ‘hotspots’. Capture

In particular, very high methane emissions were found for liquids unloading processes, gas-driven pneumatic devices and compressors. For all of these sources, emissions were very variable and there are technologies and techniques that can minimise or even eliminate emissions. For example, gas-driven pneumatics could be replaced with instrument air drivers, compressors must be inspected regularly and dry-seals are much lower emitters than wet-seals for centrifugal compressors. The economic feasibility of these changes is likely to be variable but in many cases positive: i.e. a lower product loss more than pays for the increased capital or operating cost.

Another finding of the white paper on supply chain emissions was the appearance of ‘super emitters’ all across the supply chain.

Recent studies have found evidence of a small number of facilities or equipment that emit far more than the average, which significant skews the emissions distribution. These super emitters are likely to be due to the faulty or incorrect operation of equipment or ineffective inspection and maintenance procedures. Detecting the super emitters is the key challenge here, but once we do so, average emissions from the supply chain would be reduced significantly.

Paul Balcombe videoIn summary, no technological innovation is needed to reduce supply chain emissions significantly, only commitment to action from the gas industry. It is very promising to hear words of such commitment from world leading gas producers at Gastech and now is the time to act on this.

If you are interested in finding out more, please download the report, or a short summary note  or watch our short video.

To register for our monthly newsletter, email or follow us on twitter @SGI_london.

BLOG: Tackling methane’s contribution to climate change

A blog by Dr Paul Balcombe from the IPIECA-OGCI Workshop.

On Monday 12th October, I presented at a workshop in Paris which was focussed on understanding methane emissions from the natural gas supply chain. ItOGCI IPIECA was a conference organised by IPIECA and OGCI, who are both voluntary initiatives set up by major oil and gas producers to share knowledge on emissions reductions.

It was great to get a chance to present the work of the Sustainable Gas Institute on methane and carbon dioxide emissions from the supply chain to all these new faces: about 30 new perspectives from industry, as well as some from government, academia and NGOs.

The aim of the conference was really to pool together all of our knowledge on what we currently know about methane emissions from the natural gas industry. The idea is that we can identify the most important gaps in our knowledge that we need to fill and to discuss how we can start to do this.

Key headlines

One of the highlights of the conference was a talk by Prof Myles allenmylesAllen from the Environmental Change Institute at the University of Oxford. He delved into detail about the complicated issue of how potent methane is compared to carbon dioxide in terms of climate change. Methane is much more potent in the short term but doesn’t last as long in the atmosphere, so has a much lower lasting effect than CO2. Prof Allen says that, because of this, we need to make sure that we focus on both methane and CO2: if we don’t reduce CO2, we will never stabilise our greenhouse gas emissions; but if we don’t reduce methane, we will have a much larger global temperature when we do reach the peak.

Steve-Hamburg_D4B8294_287x377Another eye-opener was from a talk by Steve Hamburg, who heads up the work done by the Environmental Defense Fund on direct methane measurement all across the US. It was great to hear him talk so passionately about the massive task of emissions measurement and reduction. One of the take home messages Steve made was that reducing methane emissions is extremely important because this reduces the speed that we are warming the climate (whereas reducing CO2 reduces the overall temperature).

The key challenges that we summarised from the end of the first day were:

  • We need to increase methane emissions data collection. We have seen a big rise in data collection in the US which is great, but we need this to continue to other regions and more downstream emissions measurement.
  • It is clear that emissions are highly variable and it is vital that data represents the high distribution of emissions.
  • It is also vital that data is validated independently. Much work is going on by the industry to measure and in future publish emissions data, but Capturethe data must be validated so that transparency is maximised.
  • There is real potential to reduce emissions further and the technology is there. The key is to do this in as low cost as possible and to ensure that appropriate mechanisms are in place to detect super emitters quickly.

If you are interested in finding out more about the subject, read our recent paper (or a short summary) on the challenge of methane and CO2 emissions in the natural gas supply chain.